Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transformation between oxidation states is widespread in transition metal coordination chemistry and biochemistry, typically occurring in solution. However, air-induced oxidation in porous crystalline solids with retention of crystallinity is rare due to the dearth of materials with high structural stability that are inherently redox active. Herein, we report a new family of such materials, four isostructural cobalt-pyrazolate frameworks of face-centered cubic, , topology, , that are sustained by Co molecular building blocks (MBBs) and dipyrazolate ligands, . were observed to spontaneously transform from Co(II) to Co(III) MBBs in air with retention of crystallinity, marking the first such instance in metal-organic frameworks (MOFs). This transformation can also be achieved through water vapor sorption cycling, heating, or chemical oxidation. The reverse reactions were conducted by exposure of to aqueous hydrazine. exhibited high gravimetric water vapor uptakes of 0.55-0.68 g g at 30% relative humidity (RH), while in the inflection point shifted to lower RH and framework stability improved. Insight into the transformation between and was gained from single crystal X-ray diffraction and spectroscopy. Overall, the crystal engineering approach we adopted has afforded a new family of MOFs that exhibit cobalt redox chemistry in a confined space coupled with high porosity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487582PMC
http://dx.doi.org/10.1021/jacs.4c09173DOI Listing

Publication Analysis

Top Keywords

retention crystallinity
8
water vapor
8
reversible coii-coiii
4
transformation
4
coii-coiii transformation
4
transformation family
4
family metal-dipyrazolate
4
metal-dipyrazolate frameworks
4
frameworks transformation
4
transformation oxidation
4

Similar Publications

Construction of melem/BiVO/g-CN photocatalyst with a conjugated S-scheme charge transfer pathway for boosting photocatalytic activity under LED light irradiation.

Environ Res

September 2025

Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:

The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.

View Article and Find Full Text PDF

A series of Ni-MOF materials were synthesized by a one-step solvothermal method under different reaction conditions, including metal source, organic ligand, reaction time and reaction temperature. The results demonstrated that the Ni-MOFs synthesized with Ni(NO3)2•6H2O as the metal source had higher crystallinity and a more uniform crystalline structure than those with NiCl2•6H2O. Different organic ligands led to the formation of Ni-MOFs in various morphologies.

View Article and Find Full Text PDF

Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.

View Article and Find Full Text PDF

Dynamic dual-mode terahertz device with nonvolatile switching for integrated on-chip and free-space applications.

Microsyst Nanoeng

September 2025

Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF