98%
921
2 minutes
20
Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input. Experimental validation demonstrates two devices: Device I dynamically transitions between NF SPP focusing and FF vortex beam generation, while Device II toggles NF anomalous SPP focusing and FF holographic imaging. The metasurface uniquely integrates simultaneous amplitude/phase control for SPPs and free-space waves, overcoming the single-channel limitations of prior works. With reversible switching cycles and nonvolatile state retention (>10 years), this platform bridges the gap between on-chip plasmonics and free-space terahertz technologies, offering transformative potential for applications in 6 G communication, encrypted data storage, and multifunctional metasensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41378-025-01020-3 | DOI Listing |
Can J Microbiol
September 2025
Universidad de Costa Rica, School of Microbiology & Center for Research in Tropical Diseases (CIET), San José, Costa Rica;
Coffee plants and beans are prone to fungal contamination that pose health risks to consumers by producing mycotoxins like ochratoxin A (OTA). Thus, the present study aimed to analyze the mycobiota of Costa Rican coffee beans, focusing on potentially ochratoxigenic species and their in vitro susceptibility patterns to antifungal agents. Fungal isolates were obtained from cherry, green, and roasted coffee beans from Costa Rica; they were identified by morphology, MALDI-TOF technology, and sequencing.
View Article and Find Full Text PDFMicrosyst Nanoeng
September 2025
Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.
View Article and Find Full Text PDFLancet Planet Health
September 2025
Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
Rift Valley fever (RVF), a zoonotic mosquito-borne viral disease with erratic occurrence and complex epidemiology, results in substantial costs to veterinary and public health and national economies. Since 1985, RVF virus (RVFV) epidemiology has focused on epidemics triggered by flood-induced emergence of transovarially infected mosquitoes, following an interepidemic period during which RVFV persists primarily in floodwater Aedes spp mosquito eggs, with potential for low-level interepidemic circulation. In this Personal View, we challenge this classic framework of RVFV epidemiology, presenting instead a spectrum of RVFV dynamics ranging from epidemic to hyperendemic.
View Article and Find Full Text PDFMol Plant Pathol
September 2025
Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, Málaga, Spain.
The type III secretion system in Pseudomonas syringae complex pathogens delivers type III effectors (T3Es) into plant cells to manipulate host processes, enhance survival, and promote disease. While substantial research has focused on herbaceous pathogens, T3Es in strains infecting woody hosts are less understood. This study investigates the HopBL family of effectors in Pseudomonas savastanoi, a pathogen of woody plants.
View Article and Find Full Text PDFMol Biochem Parasitol
September 2025
Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan.
Parasitic diseases caused by Leishmania spp. create considerable health concerns in animals, resulting in a considerable financial impact. They causes a complex infection in equines, affecting weight gain, skin, liver, and spleen.
View Article and Find Full Text PDF