Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In situ disc regeneration is a meticulously orchestrated process, which involves cell recruitment, proliferation and differentiation within a local inflammatory niche. Thus far, it remains a challenge to establish a multi-staged regulatory framework for coordinating these cellular events, therefore leading to unsatisfactory outcome. This study constructs a super paramagnetically-responsive cellular gel, incorporating superparamagnetic iron oxide nanoparticles (SPIONs) and aptamer-modified palladium-hydrogen nanozymes (PdH-Apt) into a double-network polyacrylamide/hyaluronic acid (PAAm/HA) hydrogel. The Aptamer DB67 within magnetic hydrogel (Mag-gel) showed a high affinity for disialoganglioside (GD2), a specific membrane ligand of nucleus pulposus stem cells (NPSCs), to precisely recruit them to the injury site. The Mag-gel exhibits remarkable sensitivity to a magnetic field (MF), which exerts tunable micro/nano-scale forces on recruited NPSCs and triggers cytoskeletal remodeling, consequently boosting cell expansion in the early stage. By altering the parameters of MF, the mechanical cues within the hydrogel facilitates differentiation of NPSCs into nucleus pulposus cells to restore disc structure in the later stage. Furthermore, the PdH nanozymes within the Mag-gel mitigate the harsh inflammatory microenvironment, favoring cell survival and disc regeneration. This study presents a remote and multi-staged strategy for chronologically regulating endogenous stem cell fate, supporting disc regeneration without invasive procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600201PMC
http://dx.doi.org/10.1002/advs.202408093DOI Listing

Publication Analysis

Top Keywords

disc regeneration
16
hydrogel facilitates
8
cell recruitment
8
recruitment proliferation
8
proliferation differentiation
8
inflammatory niche
8
nucleus pulposus
8
disc
5
cell
5
novel superparamagnetic-responsive
4

Similar Publications

Sciatica, often resulting from lumbar disc herniation or nerve compression, disrupts electrical signal transmission, leading to muscle atrophy, mitochondrial dysfunction, and impaired energy metabolism. This study explored the therapeutic effects of Fu's subcutaneous needling (FSN) in a chronic constriction injury (CCI) rat model, assessing its impact on neuropathic pain, muscle mass, and structural integrity. Histological and ultrastructural analyses demonstrated that FSN alleviated hypersensitivity, reduced muscle atrophy, preserved mitochondrial density, and maintained glycogen storage.

View Article and Find Full Text PDF

A Human Progenitor Cell-Based Tissue Engineered Intervertebral Disc.

Tissue Eng Part A

September 2025

Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Cell and tissue engineering therapies provide promise for regenerating damaged intervertebral disc (IVD) tissue and resolving the low back pain that often accompanies it. However, these treatments remain experimental and unavailable for patients. Furthermore, the large body of work characterizing and utilizing mesenchymal stromal cells (MSCs) for these applications has, unfortunately, not resulted in any FDA-approved spinal therapies.

View Article and Find Full Text PDF

Biomimetic Multilayered Gas-Foaming Scaffold with Sustained bFGF Delivery for Annulus Fibrosus Regeneration.

Adv Healthc Mater

September 2025

Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, 1111 XianXia Road, Shanghai, 200336, China.

Current clinical treatments for intervertebral disc (IVD) herniation (e.g., discectomy) often lead to re-herniation, and tissue engineering scaffolds for annulus fibrosus (AF) regeneration remain scarce, particularly those capable of mimicking the multilayered structure of native AF.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a common age-related disorder associated with inflammation, pain and impaired mobility. In this study, we developed a therapeutic system using silk fibroin (SF) hydrogel loaded with mRNA-engineered extracellular vesicles derived from murine bone marrow mesenchymal stem cells (BMSCs-EVs) to modulate macrophage polarization and alleviate IVDD. BMSCs were isolated from 6-week-old C57BL/6 mice, and an acute IVDD model was established via 18G needle puncture of the coccygeal discs (Co7-Co10).

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a leading cause of chronic low back pain, significantly impacting the quality of life for millions of individuals worldwide. The onset of IVDD is associated with various factors such as age, lifestyle, and genetics, and its pathological mechanisms involve multidimensional interactions, including oxidative stress, inflammation, and extracellular matrix (ECM) metabolic disorders. During degeneration, there is a reduction in the number of nucleus pulposus cells (NPCs), resulting in an imbalance between the synthesis and degradation of the ECM, leading to changes in the disc's morphology and biomechanical function, ultimately causing pain and mobility issues.

View Article and Find Full Text PDF