98%
921
2 minutes
20
Azimuth resolution and swath width are two crucial parameters in spaceborne synthetic aperture radar (SAR) systems. However, it is difficult for conventional spaceborne SAR to simultaneously achieve high-resolution wide-swath (HRWS) due to the minimum antenna area constraint. To mitigate this limitation, some representative HRWS SAR imaging techniques have been investigated, e.g., the azimuth multichannel technique, digital beamforming (DBF) technique, and pulse repetition interval (PRI) variation technique. This paper focus on a comprehensive review of the three techniques with respect to their latest developments. First, some key parameters of HRWS SAR are presented and analyzed to help the reader establish the general concept of SAR. Second, three techniques are introduced in detail, roughly following a simple-to-complex approach, i.e., start with the basic concept, then move to the core principles and classic technical details, and finally report the technical challenges and corresponding solutions. Third, some in-depth insights on the comparison among the three techniques are given. The purpose of this paper is to provide a review and brief perspective on the development of HRWS SAR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436175 | PMC |
http://dx.doi.org/10.3390/s24185978 | DOI Listing |
Sensors (Basel)
September 2024
Department of Space Microwave Remote Sensing System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100090, China.
Azimuth resolution and swath width are two crucial parameters in spaceborne synthetic aperture radar (SAR) systems. However, it is difficult for conventional spaceborne SAR to simultaneously achieve high-resolution wide-swath (HRWS) due to the minimum antenna area constraint. To mitigate this limitation, some representative HRWS SAR imaging techniques have been investigated, e.
View Article and Find Full Text PDFSensors (Basel)
July 2024
College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
Azimuth multi-channel synthetic aperture radar (SAR) has always been an important technical means to achieve high-resolution wide-swath (HRWS) SAR imaging. However, in the space-borne azimuth multi-channel SAR system, random phase noise will be produced during the operation of each channel receiver. The phase noise of each channel is superimposed on the SAR echo signal of the corresponding channel, which will cause the phase imbalance between the channels and lead to the generation of false targets.
View Article and Find Full Text PDFSensors (Basel)
May 2024
Beijing Institute of Tracking and Communication Technology, Beijing 100094, China.
High-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging with azimuth multi-channel always suffers from channel phase and amplitude errors. Compared with spatial-invariant error, the range-dependent channel phase error is intractable due to its spatial dependency characteristic. This paper proposes a novel parameterized channel equalization approach to reconstruct the unambiguous SAR imagery.
View Article and Find Full Text PDFSensors (Basel)
October 2023
College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
Conventional squinted sliding spotlight synthetic aperture radar (SAR) imaging suffers from substantial swath width reduction and complex processing requirements due to the continuous variation in the squint angle and the large range cell migration (RCM) throughout the data acquisition interval. A novel two-dimensional (2D) beam scanning mode for high-resolution wide swath (HRWS) imaging is proposed. The key to the novel imaging mode lies in the synchronous scanning of azimuth and range beams, allowing for a broader and more flexible imaging swath with a high geometric resolution.
View Article and Find Full Text PDFSensors (Basel)
December 2022
Nanjing Research Institute of Electronic Technology, Nanjing 210039, China.
Multichannel SAR systems have grown rapidly over the past decade due to their powerful high-resolution and wide-swath (HRWS) capabilities. Because spatially separated channels also have the potential to suppress jamming, dual-channel cancellation is a general method that is effective regardless of the type of jamming signal. In this paper, the principle of dual-channel cancellation (DCC) is introduced, and several practical problems using DCC are also discussed.
View Article and Find Full Text PDF