Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The relationship between metastasis-associated protein 2 (MTA2) overexpression and tumor growth and metastasis has been extensively studied in a variety of tumor cells but not in human osteosarcoma cells. This study aims to elucidate the clinical significance, underlying molecular mechanisms, and biological functions of MTA2 in human osteosarcoma and . Our results show that MTA2 was elevated in osteosarcoma cell lines and osteosarcoma tissues and was associated with tumor stage and overall survival of osteosarcoma patients. Knockdown of MTA2 inhibited osteosarcoma cell migration and invasion by reducing the expression of urokinase-type plasminogen activator (uPA). Bioinformatic analysis demonstrated that high levels of uPA in human osteosarcoma tissues correlated positively with MTA2 expression. Furthermore, treatment with recombinant human uPA (Rh-uPA) caused significant restoration of OS cell migration and invasion in MTA2 knockdown osteosarcoma cells. We found that ERK1/2 depletion increased the expression of uPA, facilitating osteosarcoma cell migration and invasion. Finally, MTA2 depletion significantly reduced tumor metastasis and the formation of lung nodules . Overall, our study suggests that MTA2 knockdown suppresses osteosarcoma cell metastasis by decreasing uPA expression via ERK signaling. This finding provides new insight into potential treatment strategies against osteosarcoma metastasis by targeting MTA2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424574PMC
http://dx.doi.org/10.18632/aging.206070DOI Listing

Publication Analysis

Top Keywords

human osteosarcoma
16
osteosarcoma cell
16
mta2 knockdown
12
osteosarcoma
12
cell migration
12
migration invasion
12
mta2
10
knockdown suppresses
8
osteosarcoma metastasis
8
upa expression
8

Similar Publications

LDH-chitosan bionanocomposites for oncologic applications: A refreshing perspective on the mutual influence through intermolecular forces toward controlled morphology and dispersion.

Int J Biol Macromol

September 2025

Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483, Iași, Romania; Faculty of Chemistry, Al. I. Cuza University, 11- Carol I Bvd., 700506, Iasi, Romania. Electronic address:

This contribution discusses the design of bionanocomposites based on chitosan and MgAl layered double hydroxides (LDH) for cancer therapy. Compared to other studies, our approach was to pre-adsorb the metal chloride precursors of LDH on chitosan while the solution of metal precursors with and without H provided the acidic environment for polymer dissolution. The structure, morphology and chemical composition of the bionanocomposites were characterized by XRD, FTIR, TG, etc.

View Article and Find Full Text PDF

Osteosarcoma (OS) is an uncommon malignancy with stagnant survival rates over the past four decades and early-stage metastasis, predominantly affecting children and adolescents. This study identified significant metabolic differences between metastatic and non-metastatic OS samples through bioinformatics analysis, highlighting key processes such as cell proliferation, mitochondrial assembly, and changes in mitochondrial membrane permeability. Among differentially expressed genes, Pleckstrin Homology And FYVE Domain Containing 1 (PLEKHF1) was the most significantly downregulated in metastatic OS samples.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are pivotal in shaping the immunosuppressive and chemoresistant tumor microenvironment (TME) of osteosarcoma (OS). This review explores how CAFs drive OS progression through paracrine signaling (e.g.

View Article and Find Full Text PDF

Targeted Inhibition of NOTCH2 and Importin-β Promotes Osteogenic Differentiation of Osteosarcoma Cells.

Drug Dev Res

September 2025

Department of Orthopedics, Gaoxin Branch of The First Affiliated Hospital, Nanchang University, Nanchang, PR China.

Osteosarcoma (OS) is a common malignant bone tumor, frequently associated with impaired osteogenic differentiation of tumor cells. Recent studies have suggested that the NOTCH signaling pathway plays a crucial role in maintaining tumor cell stemness and may influence their differentiation status. This study investigates the role of NOTCH2, a key receptor in the NOTCH family, in regulating osteogenic differentiation in OS.

View Article and Find Full Text PDF

Dramatic multifocal osteosarcoma treatment response in the setting of POT1 tumor predisposition syndrome.

Cancer Genet

August 2025

Cincinnati Children's Hospital Medical Center, Division of Oncology, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA. Electronic address:

Introduction: POT1 tumor predisposition (POT1-TPD) is associated with a spectrum of malignancies due to loss of function mutations in POT1 leading to telomere elongation and genomic instability. Osteosarcoma is the most common primary malignant bone tumor and has a poor prognosis when multifocal.

Case Presentation: A 15-year-old male was found to have a primary right distal femur osteosarcoma with multiple additional bony sites of disease.

View Article and Find Full Text PDF