First Report on the Trophic Transfer and Priority List of Liquid Crystal Monomers in the Pearl River Estuary.

Environ Sci Technol

State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liquid crystal monomers (LCMs) are emerging organic pollutants due to their potential persistence, toxicity, and bioaccumulation. This study first characterized the levels and compositions of 19 LCMs in organisms in the Pearl River Estuary (PRE), estimated their bioaccumulation and trophic transfer potential, and identified priority contaminants. LCMs were generally accumulated in organisms from sediment, and the LCM concentrations in all organisms ranged from 32.35 to 1367 ng/g lipid weight. The main LCMs in organisms were biphenyls and analogues (BAs) (76.6%), followed by cyanobiphenyls and analogues (CBAs) (15.1%), and the least were fluorinated biphenyls and analogues (FBAs) (11.2%). The most abundant LCM monomers of BAs, FBAs, and CBAs in LCMs in organisms were 1-(4-propylcyclohexyl)-4-vinylcyclohexane (15.1%), 1-ethoxy-2,3-difluoro-4-(4-(4-propylcyclohexyl) cyclohexyl) benzene (EDPBB, 10.1%), and 4'-propoxy-4-biphenylcarbonitrile (5.1%), respectively. The niche studies indicated that the PRE food web was composed of terrestrial-based diet and marine food chains. Most LCMs exhibited biodilution in the terrestrial-based diet and marine food chains, except for EDPBB and 4,4'-bis(4-propylcyclohexyl) biphenyl (BPCHB). The hydrophobicity, position of fluorine substitution of LCMs, and biological habits may be important factors affecting the bioaccumulation and trophic transfer of LCMs. BPCHB, 1-(prop-1-enyl)-4-(4-propylcyclohexyl) cyclohexane, and EDPBB were characterized as priority contaminants. This study first reports the trophic transfer processes and mechanisms of LCMs and the biomonitoring in PRE.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c04962DOI Listing

Publication Analysis

Top Keywords

trophic transfer
16
lcms organisms
12
lcms
9
liquid crystal
8
crystal monomers
8
pearl river
8
river estuary
8
bioaccumulation trophic
8
priority contaminants
8
biphenyls analogues
8

Similar Publications

Trophic-level accumulation and transfer of legacy and emerging contaminants in marine biota: meta-analysis of mercury, PCBs, microplastics, PFAS, PAHs.

Mar Pollut Bull

September 2025

Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:

Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.

View Article and Find Full Text PDF

Nanoplastics (NPs) in marine ecosystems have garnered increasing attention for their interference with the physiological processes of aquatic organisms. An in-depth examination of the toxicological responses of Nannochloropsis oceanica, a species vital to marine ecosystems, is essential due to the crucial role of lipid metabolism in carbon sequestration and energy allocation in microalgae. This study analyzed the toxicological responses of N.

View Article and Find Full Text PDF

Trophic transfer of CeO nanoparticles from clamworm to juvenile turbot and related changes in fish flesh quality.

Eco Environ Health

September 2025

Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.

Engineered nanoparticles (ENPs) accumulate in marine sediments and exhibit adverse effects on benthic organisms. However, the effect of ENPs on marine benthic food chains is largely unknown. Herein, we investigated the trophic transfer and transformation of CeO ENPs within a simulated marine benthic food chain from clamworm () to turbot (), as well as their effects on fish flesh quality.

View Article and Find Full Text PDF

Evaluation zooplankton community and energy transfer efficiency: A case in the coastal waters of Shandong, China.

Mar Environ Res

September 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Zooplankton are sensitive indicators of environmental changes and crucial components of marine food webs, facilitating energy transfer between primary producers and higher trophic levels. This study used ZooScan image analysis to investigate variations in zooplankton abundance and biovolume in Shandong coastal waters during spring (May 2022), summer (August 2022), and winter (December 2022 and February 2023). Functional indices such as taxonomic diversity, the normalized biomass size spectrum (NBSS), size diversity, and mean body size were calculated to describe the seasonal dynamics of energy transfer efficiency in zooplankton.

View Article and Find Full Text PDF

We evaluated the bioaccumulation and transfer of per- and polyfluoroalkyl substances (PFAS) in a stream food web contaminated by a food processing facility. Abiotic (i.e.

View Article and Find Full Text PDF