Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids, which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product chain length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range.

One-sentence Summary: In this work, the authors use constraint-based metabolic modelling and enzyme cost minimization to assess the feasibility of using metabolic engineering to expand the product spectrum of anaerobic chain elongating bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388927PMC
http://dx.doi.org/10.1093/jimb/kuae027DOI Listing

Publication Analysis

Top Keywords

chain elongating
28
elongating bacteria
28
fatty acids
12
metabolic engineering
12
chain
9
bacteria
8
c6-c8 medium-chain
8
medium-chain fatty
8
assess feasibility
8
expanding product
8

Similar Publications

With growing public attention to environmental issues and sustainable development, biodegradable bio-based plastics have attracted widespread interest. This study reveals the chemical-physical synergistic regulation mechanism of biodegradable PLA/PBAT blends through the synergistic modification of epoxidized natural rubber (ENR) and epoxy chain extender (ADR). Interfacial interaction analysis shows that PBAT tends to encapsulate ENR to form aggregates.

View Article and Find Full Text PDF

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

Achieving quantitative control over interlayer spacing in multilayer two-dimensional (2D) supramolecular organic frameworks (SOFs) remains a fundamental challenge. Here, we report a molecular pillar engineering strategy enabling programmable vertical expansion of bilayer architectures. By designing elongated bipyridine pillars L2/L3 (3.

View Article and Find Full Text PDF

: an R package to infer gene transcription rates with a novel least sum of squares method.

NAR Genom Bioinform

September 2025

Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor 48109 MI, United States.

The dynamics of transcriptional elongation influence many biological activities, such as RNA splicing, polyadenylation, and nuclear export. To quantify the elongation rate, a typical method is to treat cells with drugs that inhibit RNA polymerase II (Pol II) from entering the gene body and then track Pol II using Pro-seq or Gro-seq. However, the downstream data analysis is challenged by the problem of identifying the transition point between the gene regions inhibited by the drug and not, which is necessary to calculate the transcription rate.

View Article and Find Full Text PDF

Biocarrier-driven enhancement of caproate production via microbial chain elongation: Linking metabolic redirection and microbiome assembly.

Bioresour Technol

September 2025

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China. Electronic address:

This study investigated the effects of five representative biocarriers-biochar (BC), activated carbon (AC), nano-magnetite (NM), zero-valent iron (ZVI), and polyurethane sponge (PUS)-on chain elongation (CE) from ethanol/acetate in anaerobic systems. All carriers enhanced CE to varying extents. BC and NM significantly increased caproate yields (6032.

View Article and Find Full Text PDF