Biocarrier-driven enhancement of caproate production via microbial chain elongation: Linking metabolic redirection and microbiome assembly.

Bioresour Technol

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigated the effects of five representative biocarriers-biochar (BC), activated carbon (AC), nano-magnetite (NM), zero-valent iron (ZVI), and polyurethane sponge (PUS)-on chain elongation (CE) from ethanol/acetate in anaerobic systems. All carriers enhanced CE to varying extents. BC and NM significantly increased caproate yields (6032.6 and 5996.6 mg/L) and shortened lag phases (6.22 and 7.18 days) compared with Control (2226.6 mg/L, 11.61 days). In the second cycle, carbon selectivity rose to 58.9% and 58.0% with AC and BC, respectively, versus 18.9% in Control. Biocarrier addition enriched chain-elongating syntrophs, increased community diversity, and elevated predicted fatty acid biosynthesis gene abundance, shifting metabolism toward caproate over reduced byproducts. These findings demonstrate that carbonaceous biocarriers simultaneously alleviate product inhibition, restructure microbial networks, and reprogram metabolic pathways, providing a mechanistic basis for selective biocarrier use in microbiome engineering for medium-chain fatty acid production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2025.133272DOI Listing

Publication Analysis

Top Keywords

chain elongation
8
fatty acid
8
biocarrier-driven enhancement
4
enhancement caproate
4
caproate production
4
production microbial
4
microbial chain
4
elongation linking
4
linking metabolic
4
metabolic redirection
4

Similar Publications

Biocarrier-driven enhancement of caproate production via microbial chain elongation: Linking metabolic redirection and microbiome assembly.

Bioresour Technol

September 2025

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China. Electronic address:

This study investigated the effects of five representative biocarriers-biochar (BC), activated carbon (AC), nano-magnetite (NM), zero-valent iron (ZVI), and polyurethane sponge (PUS)-on chain elongation (CE) from ethanol/acetate in anaerobic systems. All carriers enhanced CE to varying extents. BC and NM significantly increased caproate yields (6032.

View Article and Find Full Text PDF

Study on toughening polylactic acid/poly(butylene adipate-co-terephthalate) with a curing network based on dynamically crosslinked epoxidized soybean oil.

Int J Biol Macromol

September 2025

Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key, Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:

A dynamically crosslinked network VEC (vulcanized ESO and CA) was synthesized in situ via zinc acetate-catalyzed epoxy ring-opening between epoxidized soybean oil (ESO) and anhydrous citric acid (CA), then incorporated into polylactic acid (PLA)/polybutylene adipate terephthalate (PBAT) blends to enhance interfacial compatibility. The dynamic ester-exchange network acted as an intermediate phase, improving the integration of the flexible PBAT phase within the rigid PLA matrix. VEC content critically influenced mechanical properties, with in-situ crosslinking during dynamic vulcanization enhancing chain interactions and blend homogeneity.

View Article and Find Full Text PDF

Reactive Molecular Dynamics Study on the Growth Mechanism of Nitrogen-Doped Graphene in an Arc Plasma Environment.

J Mol Model

September 2025

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, People's Republic of China.

Context: This study systematically investigates the growth mechanism of nitrogen-doped graphene in a plasma environment, with a particular focus on the effects of temperature and hydrogen radicals on its structural evolution. The results reveal that, at 3000 K, the formation of nitrogen-doped graphene proceeds through three stages: carbon chain elongation, cyclization, and subsequent condensation into planar structures. During this process, nitrogen atoms are gradually incorporated into the carbon network, forming various doping configurations such as pyridinic-N, pyrrolic-N, and graphitic-N.

View Article and Find Full Text PDF

This study focused on the chemical synthesis of auxin analogs, wherein a trifluoromethyl group was introduced near the carboxyl group in the side chain of natural and synthetic auxins, including IAA, NAA, IBA, 2,4-D, and 4-Cl-IAA. The effects of these synthetic compounds and natural auxins on plant growth regulation and callus growth were evaluated. In experiments with black gram, CF-IAA and 4-Cl-CF-IAA exhibited comparable effects to the parent compound, IAA.

View Article and Find Full Text PDF

The recovery of lactic acid (LA) from the co-fermentation of food waste and waste activated sludge is shifting from feasibility studies to process optimization and predictive modeling. This study extends the widely used International Water Association Anaerobic Digestion Model No.1 (ADM1) by incorporating lactic acid bacteria-mediated pathways and adjusted stoichiometry to simulate LA generation from sugars, implemented in the GPS-X simulation platform.

View Article and Find Full Text PDF