98%
921
2 minutes
20
Electrochemiluminescence (ECL) is typically confined to a micrometric region from the electrode surface. This study demonstrates that ECL emission can extend up to several millimeters away from the electrode employing electrogenerated chlorine bubbles. The mechanism behind this bubble-enhanced ECL was investigated using an Au microelectrode in chloride-containing and chloride-free electrolyte solutions. We discovered that ECL emission at the gas/solution interface is driven by two parallel effects. First, the bubble corona effect facilitates the generation of hydroxyl radicals capable of oxidizing luminol while the bubble is attached to the surface. Second, hypochlorite generated from chlorine sustains luminol emission for over 200 s and extends the emission range up to 5 mm into the solution, following bubble detachment. The new approach can increase the emission intensity of luminol-based assays 5-fold compared to the conventional method. This is demonstrated through a glucose bioassay, using a midrange mobile phone camera for detection. These findings significantly expand the potential applications of ECL by extending its effective range in time and space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c07566 | DOI Listing |
Small
September 2025
School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.
Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Ginseng exosomes are a kind of promising extracellular vesicle containing unique bioactive components. However, the investigation on ginseng-derived exosomes is still in the initial stage. This study developed a photonic crystal-based Bragg scattering coupling electrochemiluminescence (BSC-ECL) biosensor for detection of miRNA396a-3p in exosome-like nanoparticles (GENs) and ginseng exosomes (Gexos).
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China.
Electrochemiluminescence (ECL) imaging through closed bipolar nanoelectrode arrays (BPnEAs) has emerged as a promising method for in situ label-free wide-field electrochemical imaging. In this study, a cathodic ECL system based on [Ru(bpz)]/SO is combined with the BPnEAs fabricated on silicon nitride membrane windows through focused ion beam nanofabrication, enabling effective bipolar imaging of heterogeneous anodic electrocatalytic reactions. The shape, distribution, size, and material composition of individual electrodes within the array can be precisely controlled.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
Electrochemiluminescence (ECL) is rapidly emerging as an excellent electrochemical analytical technique for the specific and sensitive detection of various biomarkers and hazardous trace metals. Among ECL emitters, gold nanoclusters (AuNCs) have proven to be excellent luminophores due to their remarkable luminescent properties, stability, and biocompatibility. However, the low ECL efficiency of AuNCs precludes their application in ultrasensitive biosensing.
View Article and Find Full Text PDF