Dual-Shell-Solidified Gold Nanoclusters-Based Electrochemiluminescence Sensing Platform for Highly Selective and Sensitive Detection of Cu and Histidine.

ACS Appl Mater Interfaces

School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrochemiluminescence (ECL) is rapidly emerging as an excellent electrochemical analytical technique for the specific and sensitive detection of various biomarkers and hazardous trace metals. Among ECL emitters, gold nanoclusters (AuNCs) have proven to be excellent luminophores due to their remarkable luminescent properties, stability, and biocompatibility. However, the low ECL efficiency of AuNCs precludes their application in ultrasensitive biosensing. One of the key reasons for the low ECL efficiency of AuNCs is the nonradiative energy transitions arising from intramolecular vibrations and rotations of the ligands on the surface of AuNCs. Herein, we explore the ECL of Zn/Au(SG)/PDA nanoclusters (NCs), where Zn and 2,6-pyridinedicarboxaldehyde (PDA) activate the restriction of intramolecular motion (RIM) through aggregation-induced emission (AIE) to aggregation-induced enhanced emission (AIEE). This effect is achieved via cross-linking of Zn and PDA with glutathione on the surface of Au(SG), resulting in a significant enhancement of ECL emission compared to Au(SG) NCs alone. A sensitive ECL sensing system was devised with Zn/Au(SG)/PDA as the ECL emitter, with triethylamine (TEA) as the coreactant, for the detection of Cu and histidine in the linear ranges of 0.1 to 40 μM and 1 to 85 μM, respectively, with detection limits of 0.705 and 1.928 μM, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c12580DOI Listing

Publication Analysis

Top Keywords

sensitive detection
8
detection histidine
8
ecl
8
low ecl
8
ecl efficiency
8
efficiency auncs
8
dual-shell-solidified gold
4
gold nanoclusters-based
4
nanoclusters-based electrochemiluminescence
4
electrochemiluminescence sensing
4

Similar Publications

Aims: This study aims to develop and evaluate a rapid and high-multiplex pathogen detection method for clinical and food specimens to address the ongoing public health threat of foodborne infections and the limitations of conventional culture-based diagnostics.

Methods And Results: The foodborne bacteria (FBB) assay integrates multiplex PCR, T7 exonuclease hydrolysis, and a suspension bead array to simultaneously detect 16 genes from 13 major foodborne bacteria. Analytical performance was evaluated using reference strains, while diagnostic performance was assessed using clinical and food samples.

View Article and Find Full Text PDF

High-fat foods are decomposed into fatty acids during digestion and absorption, primarily occurring in the gastrointestinal tract, and numerous studies have indicated that long-term high-fat diets significantly increase the incidence of intestinal disorders. As a critical intestinal hormone, serotonin (5-hydroxytryptamine, 5-HT) is involved in regulating intestinal peristalsis, secretion, and visceral sensitivity. However, due to the lack of methods capable of reproducing intestinal mechanical activities and in situ monitoring of 5-HT levels, the influence of high-fat diets on intestinal 5-HT release remains unclear.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF

Objectives: To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.

Methods: This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks.

View Article and Find Full Text PDF

The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.

View Article and Find Full Text PDF