Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tendinopathies are a major worldwide clinical problem. The development of tendon biomimetic scaffolds is considered a promising, therapeutic approach. However, to be clinically effective, scaffolds should avoid immunological recognition. It has been well described that scaffolds composed of aligned fibers lead to a better tenocyte differentiation, vitality, proliferation and motility. However, little has been studied regarding the impact of fiber spatial distribution on the recognition by immune cells. Additionally, it has been suggested that higher hydrophilicity would reduce their immune recognition. Herein, polycaprolactone (PCL)-hyaluronic acid (HA)-based electrospun scaffolds were generated with different fiber diameters (in the nano- and micro-scales) and orientations as well as different grades of wettability and the impact of these properties on immunological recognition has been assessed, by means of Toll-like receptor (TLR) reporter cells. Our results showed that TLR 2/1 and TLR 2/6 were not triggered by the scaffolds. In addition, the TLR 4 signalling pathway seems to be triggered to a greater extent by higher PCL and HA concentrations, but the alignment of the fibers prevents the triggering of this receptor. Taken together, TLR reporter cells were shown to be a useful and effective tool to study the potential of scaffolds to induce immune responses and the results obtained can be used to inform the design of fibrous scaffolds for tendon repair.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4bm00147hDOI Listing

Publication Analysis

Top Keywords

tendon biomimetic
8
scaffolds
8
biomimetic scaffolds
8
immune recognition
8
immunological recognition
8
receptor tlr
8
tlr reporter
8
reporter cells
8
recognition
5
tlr
5

Similar Publications

Tendon/ligament (T/L) injuries sustained during motion are highly prevalent and severely impact athletes' careers and quality of life. Current treatments, including autografts, allografts, and synthetic ligaments, have limitations such as donor site morbidity, immune rejection, and biomechanical mismatch, especially under dynamic loading conditions encountered in motion. 3D bioprinting offers a revolutionary approach for constructing patient-specific T/L grafts.

View Article and Find Full Text PDF

Gradient hydrogel with bioactive glass for tendon-bone interface regeneration: Enhancing biomechanical strength and synchronized tissue regeneration.

Acta Biomater

August 2025

Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China. Electronic address:

The interface between tendon and bone is characterized by a gradient multi-tissue structure in a small-sized, localized region, and the tendon insertion cannot fully regenerate following repair for its rupture. Therefore, tendon-bone healing remains a significant challenge in the field of sports medicine. This study aims to design and fabricate a bioactive hydrogel with a continuous ion concentration gradient, using bioactive glass (BG), modified alginate (AlgMA), and gelatin.

View Article and Find Full Text PDF

Medical hydrogels represent a promising solution for the treatment of corneal diseases and trauma, offering potential to address the shortage of donor corneas. To meet the functional requirements of artificial corneas in tissue engineering, it is crucial to fabricate biomimetic structures with high optical transparency using 3D printing techniques. As fiber alignment during the printing process has a pronounced impact on light transmittance, precise control of the printing parameters is essential.

View Article and Find Full Text PDF

Multi-fingered dexterous hands provide superior dexterity in complex manipulation tasks due to their high degrees of freedom (DOFs) and biomimetic structures. Inspired by the anatomical structure of human tendons and muscles, numerous robotic hands powered by pneumatic artificial muscles (PAMs) have been created to replicate the compliant and adaptable features of biological hands. Nonetheless, PAMs have inherent nonlinear and hysteresis behaviors that create considerable challenges to achieving real-time control accuracy and stability in dexterous hands.

View Article and Find Full Text PDF

Sof t Bio-Electroactive Hydrogels for Musculoskeletal Tissue Repair and Rehabilitation.

Adv Healthc Mater

July 2025

3B's Research Group-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, 4805-017, Portugal.

Musculoskeletal tissue repair and rehabilitation face significant challenges in effectively repairing injured tissues and achieving functional recovery. Recent advancements highlight the crucial role of electrical conductivity in modulating cellular activity, promoting tissue repair, and enhancing recovery. This understanding leads to the development of bio-electroactive materials that combine biocompatibility with electrical conductivity to interact with biological systems.

View Article and Find Full Text PDF