Spatially-explicit land use change emissions and carbon payback times of biofuels under the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).

Sci Total Environ

Centre for Environmental Sciences (CMK), Environmental Economics, Hasselt University, Diepenbeek, 3590 Hasselt, Belgium; Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA;

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) requires airlines to offset their greenhouse gas (GHG) emissions above 2019 levels by either buying carbon offsets or using Sustainable Aviation Fuels (SAFs). These are drop-in jet fuels made from biomass or other renewable resources that reduce GHG emissions by at least 10 % compared to kerosene and meet certain sustainability criteria. This study assesses the direct land use change (DLUC) emissions of SAF, i.e., GHG emissions from on-site land conversion from previous uses (excluding primary forests, peatlands, wetlands, and protected and biodiversity-rich areas) into alternative feedstocks, considering spatial variability in global yields and land carbon stocks. The results provide DLUC values and carbon payback times at 0.5-degree resolution for six SAF pathways, with and without irrigation and a medium-input intensity, according to CORSIA sustainability criteria. When excluding CORSIA non-compliant areas, soybean SAF shows the highest mean DLUC factor (31.9 ± 20.7 gCO/MJ), followed by reed canary grass and maize. Jatropha SAF shows the lowest mean DLUC factor (3.6 ± 31.4 gCO/MJ), followed by miscanthus and switchgrass. The latter feedstocks show potential for reducing GHG emissions over large areas but with relatively greater variability. Country-average DLUC values are higher than accepted ILUC ones for all pathways except for maize. To ensure the GHG benefits of CORSIA, feedstocks must be produced in areas where not only carbon stocks are relatively low but also where attainable yields are sufficiently high. The results help identify locations where the combination of these two factors may be favourable for low-DLUC SAF production. Irrigated miscanthus offers the highest SAF production potential (2.75 EJ globally) if grown on CORSIA-compliant cropland and grassland areas, accounting for ∼1/5 of the total kerosene used in 2019. Quantifying other environmental impacts of SAFs is desirable to understand sustainability trade-offs and financial constraints that may further limit production potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174635DOI Listing

Publication Analysis

Top Keywords

ghg emissions
16
land change
8
carbon payback
8
payback times
8
carbon offsetting
8
offsetting reduction
8
reduction scheme
8
scheme international
8
international aviation
8
aviation corsia
8

Similar Publications

Dry matter intake (DMI) of grazing animals varies depending on environmental factors and the physiological stage of production. The amount of CH eructated (a greenhouse gas, GHG) by ruminants is correlated with DMI and is affected by feedstuff type, being generally greater for forage diets compared to concentrates. Currently, there are limited data on the relationship between DMI and GHG in extensive rangeland systems, as it is challenging to obtain.

View Article and Find Full Text PDF

One-time double-layer placement of controlled-release urea enhances wheat yield, nitrogen use efficiency and mitigates NO emissions.

Front Plant Sci

August 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Beijing, China.

Simultaneously enhancing the crop yield and reducing nitrous oxide (NO) emissions presents a critical challenge in sustainable agriculture. The application of nitrogen (N) fertilizer is a key strategy to enhance crop yield. However, conventional N application practices often lead to excessive soil N accumulation, insufficient crop N uptake and elevated greenhouse gas (GHG) emissions.

View Article and Find Full Text PDF

Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.

View Article and Find Full Text PDF

Unraveling the GHG emission patterns of inland waters in China: impact of water body types, aquatic plant life forms, and water temperature.

J Environ Manage

September 2025

Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China. Electronic address:

Inland water ecosystems play key roles in the production, transportation, transformation, storage, and consumption of global greenhouse gases (GHG). Different water body types exhibit spatial and temporal differences after considering factors such as season and aquatic plant life forms. The results revealed that the annual global warming potential (GWP) (Tg CO-eq yr) from swamps, rivers, lakes, and reservoirs in China were 1382.

View Article and Find Full Text PDF

C/N-Driven Synergies: Earthworms optimize CO/NO mitigation and soil quality in floral waste recycling.

Environ Res

September 2025

Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research

The expansion of floriculture has increased the need for sustainable floral waste management to support agricultural carbon neutrality. This study assessed the impact of carnation, lily, and rose straw amendments (with varying C/N ratios, lignin, and cellulose) on GHG emissions and soil quality with earthworm (Eisenia fetida). Controlled microcosm experiments were conducted to examine the effects of straw types and earthworms on CO and NO fluxes, as well as soil properties, enzyme activities, and microbial functions.

View Article and Find Full Text PDF