Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, multifunctional green carbon dots (CDs) have been synthesized using Galla chinensis waste (GCW) via hydrothermal method for the first time. An active packaging film has been developed in this work by combining CDs and pullulan (PL), using the solution-casting method. The microscopic morphology revealed that the CDs that were prepared using GCW exhibited good compatibility with PL. In addition, it also led to improvement in the toughness of the PL film (14.01 % to 20.26 %), along with its water vapor permeability value [1.31 to 0.53 (g·mm)/(kPa·h·m)]. The composite films consisting of CDs exhibited good UV blocking rates for the UVA (90.41 %-7.87 %), UVB (87.76 %-0.08 %), and UVC (83.39 %-0 %) spectral ranges. The composite films exhibited strong antioxidant activity, and the clearance of ABTS and DPPH were obtained to be 93.61 % and 86.30 %, respectively. In addition, the composite films showed good antibacterial activity for E. coli and S. aureus, with a high antibacterial rate of up to 99.99 %. Finally, the non-contact preservation of strawberries over a duration of 10 d at room temperature confirmed that the prepared composite film can help preserve the quality of strawberries, as well as extended their shelf-life.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133221DOI Listing

Publication Analysis

Top Keywords

composite films
12
active packaging
8
packaging film
8
galla chinensis
8
chinensis waste
8
exhibited good
8
preparation multi-functional
4
multi-functional active
4
film
4
film galla
4

Similar Publications

Composite films biobased on Prosopis nigra polysaccharide for potential sustainable food packaging.

Int J Biol Macromol

September 2025

Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Laboratorio de Biomateriales y Bioprocesos, Av. Belgrano y Pasaje Caseros, SM de Tucumán, 4000, Tucumán. R, Argentina; Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia. Laboratorio de Bioproceso

This study explores the use of plant-derived polysaccharides to develop bio-based films for food-packaging applications. A film-forming solution composed of Prosopis nigra biopolymer (PN-B), carboxymethyl cellulose (CMC), and glycerol was optimized by central composite design (CCD), resulting in two formulations: P1 and P11. The films were subsequently functionalized with silver nanoparticles (AgNPs) synthesized via chemical and biological routes.

View Article and Find Full Text PDF

Fresh walnuts are prone to moisture loss and spoilage after harvest, leading to reduced appearance and sensory quality. In this study, a multifunctional chitosan (CS)-based film was fabricated by incorporating a bacterial cellulose/oregano essential oil (BC/OEO) Pickering emulsion, with hydrogen bonding promoting cohesive matrix integration. The film's physicochemical properties, along with its antimicrobial and antioxidant activities, were systematically evaluated.

View Article and Find Full Text PDF

Thermally stable and highly wetted asymmetric porous nanocellulose/poly(m-phenylene isophthalamide) composite separators for high-performance lithium-ion batteries.

Int J Biol Macromol

September 2025

Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.

View Article and Find Full Text PDF

High wet-strength MXene/lignin-containing cellulose nanofibrils composite films with Janus structure for electromagnetic shielding and Joule heating.

Int J Biol Macromol

September 2025

State Key Laboratory of Advanced Paper making and Paper-based Materials, South China University of Technology, Guangzhou, Guangdong Province, 510640, PR China.

Developing MXene-based electromagnetic interference (EMI) shielding composite films with exceptional wet mechanical properties is crucial to address the limitation of conventional MXene-based EMI shielding composite films in humid environments. Herein, we present a fabrication strategy for Janus-structured MXene-based EMI shielding composite films with exceptional wet mechanical and Joule heating performances. Through depositing tannic acid-modified MXene (TM) on maleic anhydride-modified lignin-containing cellulose nanofibril (MLCNF) film using a scalable vacuum filtration and hot-pressing strategy.

View Article and Find Full Text PDF

Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.

View Article and Find Full Text PDF