98%
921
2 minutes
20
Achieving robust and electrically controlled valley polarization in monolayer transition metal dichalcogenides (ML-TMDs) is a frontier challenge for realistic valleytronic applications. Theoretical investigations show that the integration of 2D materials with ferroelectrics is a promising strategy; however, an experimental demonstration has remained elusive. Here, we fabricate ferroelectric field-effect transistors using a ML-WSe channel and an AlScN (AlScN) ferroelectric dielectric and experimentally demonstrate efficient tuning as well as non-volatile control of valley polarization. We measure a large array of transistors and obtain a maximum valley polarization of ∼27% at 80 K with stable retention up to 5400 s. The enhancement in the valley polarization is ascribed to the efficient exciton-to-trion (X-T) conversion and its coupling with an out-of-plane electric field, viz., the quantum-confined Stark effect. This changes the valley depolarization pathway from strong exchange interactions to slow spin-flip intervalley scattering. Our research demonstrates a promising approach for achieving non-volatile control over valley polarization for practical valleytronic device applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c04684 | DOI Listing |
Phys Rev Lett
August 2025
Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics and School of Physics, Wuhan 430074, China.
We propose a scheme for retrieving the ultrafast valley polarization (VP) dynamics in two-dimensional hexagonal materials via attosecond circular dichroism (CD) transient absorption spectroscopy. This approach builds on the CD transition between the first and higher conduction bands induced by the circularly polarized probe pulses. The population imbalance at nonequivalent valleys in the first conduction band is proportionally mapped onto the difference in absorption coefficients of two probe pulses with opposite helicities, supporting an unprecedented quantitative retrieval of the corresponding VP dynamics with subfemtosecond time resolution.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
Magnetic two-dimensional van der Waals (vdWs) materials hold potential applications in low-power and high-speed spintronic devices due to their degrees of freedom such as valley and spin. In this Letter, we propose a mechanism that uses stacking engineering to control valley polarization (VP), ferroelectricity, layer polarization (LP), and magnetism in vdWs bilayers. Through first-principles calculations, we predict that the T-VSI monolayer is a magnetic semiconductor with a sizable VP.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 28/30, 48149 Münster, Germany.
Materials exhibiting coexisting exploitable properties often result in especially attractive behavior from both fundamental and applied perspectives. In particular, magnetoelectric materials combining ferroelectric and magnetic properties are increasingly becoming paramount nowadays. Here, we show that FeH(PO) exhibits proton conductivity and the coexistence of magnetic and polar structural features, suggesting that such frameworks may be of broader interest beyond the field of proton conductors.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Circuito Marie Curie S/N, Parque Científico y Tecnológico QUANTUM Ciudad del Conocimiento, Zacatecas, Zacatecas, 98160, MEXICO.
8-Pmmn borophene is a very attractive 2D material from both the fundamental and technological standpoints. Its tilted band structure gives rise to exotic phenomena such as the oblique Klein tunneling and its gated junction directional dependence represents an additional degree of freedom that can be used to modulate the spin-valley electronic transport. Spin and valley polarization are possible in ferromagnetic 8-Pmmn borophene junctions by having precise control of the transverse wave vector as well as by appropriately tuning the electrostatic and magnetic gating.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China.
Emerging phenomena such as the valley Hall effect and layer Hall effect, showing promise for next-generation electronics and valleytronic devices, have attracted considerable attention. However, most studies of the layer Hall effect have been restricted to antiferromagnetic or topological systems. Based on first-principles calculations, we establish a valley-layertronics framework and predict that two-dimensional ScI is a multiferroic material exhibiting substantial spontaneous valley polarization in both its monolayer (93.
View Article and Find Full Text PDF