98%
921
2 minutes
20
Optical path length (OPL) noise resulting from stray light significantly constrains interferometry displacement measurements in the low-frequency band. This paper presents an analytical model considering the presence of stray light in heterodyne laser interferometers. Due to the cyclic nonlinear coupling effect, there will be some special OPLs of stray light, minimizing the frequency-mixing impact to zero. Consequently, we propose a noise suppression scheme that locks the OPL of stray light at the zero coupling point. Therefore, we significantly enhanced the interference displacement measurement noise within the low-frequency band. Experimental results show that the interferometer achieves a displacement noise level lower than 6 pm/Hz covering 1 mHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.523455 | DOI Listing |
Nature
September 2025
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
The development of ultrablack coatings with exceptional absorption (>98%) has historically faced significant scientific and engineering challenges, primarily due to limitations in material selection, structural design, and practical durability. Considering the difficulties in practical applications of ultrablack materials with micro/nano structures and the limitations of planar ultrablack coatings in optical performance, we introduce an innovative integration of conventional planar ultrablack coatings with a specifically engineered trilayer antireflection architecture. This hybrid system incorporates a refractive index distribution (1.
View Article and Find Full Text PDFSci Adv
September 2025
Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 China.
Optical-enabled identification and interaction provide an integral link between the digital and physical realms. However, nowadays optic-encodings, predominantly reliant on light's intensity and wavelength, are hindered by environmental light interference and limited information capacity. The introduction of unusual polarization states, such as circular polarization-which is absent from ordinary surroundings-holds promise for higher-dimensional interaction.
View Article and Find Full Text PDFBiomed Phys Eng Express
August 2025
Department of Physics, Queen's University, 99 University Avenue, Kingston, Ontario, K7L 3N6, CANADA.
Radiochromic film is widely recognised as an easy-to-use, high-resolution dosimeter, but accurate, consistent, and reliable film readout remains an ongoing challenge. In this work, we compare three different radiochromic film imaging systems: a conventional flatbed scanner, and two systems that were custom built in-house (a diffuse light field and camera system, and a scanning point source and detector system). We examine key optical properties and imaging parameters to determine the strengths and weaknesses of each imaging system.
View Article and Find Full Text PDFSensors (Basel)
July 2025
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540-1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure-combining a multimode fiber and an apodizator-achieves 85.
View Article and Find Full Text PDF