98%
921
2 minutes
20
Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we acquired fundamental knowledge on lignin-modified poplar expressing 3-dehydroshikimate dehydratase using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibited the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. The changes affected predominantly the shikimate and phenylpropanoid pathways as well as secondary cell wall metabolism, and resulted in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349870 | PMC |
http://dx.doi.org/10.1093/jxb/erae251 | DOI Listing |
Plant Cell Rep
March 2025
College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
A promoter, PRSEP7, was identified and confirmed to be specifically expressed in poplar roots. Poplar PRSEP7::CadWp transgenic lines showed high phytoremediation of Cd(II)-contaminated WPM and soil. Cadmium ions (Cd(II)) are heavy metals that are difficult for organisms to decompose in our natural environment.
View Article and Find Full Text PDFJ Exp Bot
August 2024
Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.
Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis.
View Article and Find Full Text PDFBiomacromolecules
June 2024
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Lignocellulosic biomass is a highly sustainable and largely carbon dioxide neutral feedstock for the production of biofuels and advanced biomaterials. Although thermochemical pretreatment is typically used to increase the efficiency of cell wall deconstruction, genetic engineering of the major plant cell wall polymers, especially lignin, has shown promise as an alternative approach to reduce biomass recalcitrance. Poplar trees with reduced lignin content and altered composition were previously developed by overexpressing bacterial 3-dehydroshikimate dehydratase (QsuB) enzyme to divert carbon flux from the shikimate pathway.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2022
DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
Background: Lignocellulosic resources are promising feedstocks for the manufacture of bio-based products and bioenergy. However, the inherent recalcitrance of biomass to conversion into simple sugars currently hinders the deployment of advanced bioproducts at large scale. Lignin is a primary contributor to biomass recalcitrance as it protects cell wall polysaccharides from degradation and can inhibit hydrolytic enzymes via non-productive adsorption.
View Article and Find Full Text PDFNew Phytol
July 2022
Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
Renewed interests in the development of bioenergy, biochemicals, and biomaterials have elicited new strategies for engineering the lignin of biomass feedstock plants. This study shows, for the first time, that 3,4-dihydroxybenzoate (DHB) is compatible with the radical coupling reactions that assemble polymeric lignin in plants. We introduced a bacterial 3-dehydroshikimate dehydratase into hybrid poplar (Populus alba × grandidentata) to divert carbon flux away from the shikimate pathway, which lies upstream of lignin biosynthesis.
View Article and Find Full Text PDF