Ectopic Production of 3,4-Dihydroxybenzoate Affects Cellulose Structure and Organization.

Biomacromolecules

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lignocellulosic biomass is a highly sustainable and largely carbon dioxide neutral feedstock for the production of biofuels and advanced biomaterials. Although thermochemical pretreatment is typically used to increase the efficiency of cell wall deconstruction, genetic engineering of the major plant cell wall polymers, especially lignin, has shown promise as an alternative approach to reduce biomass recalcitrance. Poplar trees with reduced lignin content and altered composition were previously developed by overexpressing bacterial 3-dehydroshikimate dehydratase (QsuB) enzyme to divert carbon flux from the shikimate pathway. In this work, three transgenic poplar lines with increasing QsuB expression levels and different lignin contents were studied using small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS). SANS showed that although the cellulose microfibril cross-sectional dimension remained unchanged, the ordered organization of the microfibrils progressively decreased with increased QsuB expression. This was correlated with decreasing total lignin content in the QsuB lines. WAXS showed that the crystallite dimensions of cellulose microfibrils transverse to the growth direction were not affected by the QsuB expression, but the crystallite dimensions parallel to the growth direction were decreased by ∼20%. Cellulose crystallinity was also decreased with increased QsuB expression, which could be related to high levels of 3,4-dihydroxybenzoate, the product of QsuB expression, disrupting microfibril crystallization. In addition, the cellulose microfibril orientation angle showed a bimodal distribution at higher QsuB expression levels. Overall, this study provides new structural insights into the impact of ectopic synthesis of small-molecule metabolites on cellulose organization and structure that can be used for future efforts aimed at reducing biomass recalcitrance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c00187DOI Listing

Publication Analysis

Top Keywords

qsub expression
24
cell wall
8
biomass recalcitrance
8
lignin content
8
qsub
8
expression levels
8
cellulose microfibril
8
decreased increased
8
increased qsub
8
crystallite dimensions
8

Similar Publications

In planta production of the nylon precursor beta-ketoadipate.

J Biotechnol

August 2025

Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA. Electronic address:

Beta-ketoadipate (βKA) is an intermediate of the βKA pathway involved in the degradation of aromatic compounds in several bacteria and fungi. Beta-ketoadipate also represents a promising chemical for the manufacturing of performance-advantaged nylons. We established a strategy for the in planta synthesis of βKA via manipulation of the shikimate pathway and the expression of bacterial enzymes from the βKA pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Switchgrass is a sustainable biofuel option due to its quick growth, low requirements, and high yields, but reducing its lignin content could enhance energy conversion efficiency.
  • Engineered switchgrass expressing QsuB shows decreased lignin and changes in microbial communities, with specifically lower fungal diversity in its roots and rhizosphere compared to wild-type plants.
  • The study reveals how plant metabolism changes can impact the microbiome, aiding in the development of bioengineering strategies while considering potential unintended effects on microbial interactions.
View Article and Find Full Text PDF

Ectopic Production of 3,4-Dihydroxybenzoate Affects Cellulose Structure and Organization.

Biomacromolecules

June 2024

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Lignocellulosic biomass is a highly sustainable and largely carbon dioxide neutral feedstock for the production of biofuels and advanced biomaterials. Although thermochemical pretreatment is typically used to increase the efficiency of cell wall deconstruction, genetic engineering of the major plant cell wall polymers, especially lignin, has shown promise as an alternative approach to reduce biomass recalcitrance. Poplar trees with reduced lignin content and altered composition were previously developed by overexpressing bacterial 3-dehydroshikimate dehydratase (QsuB) enzyme to divert carbon flux from the shikimate pathway.

View Article and Find Full Text PDF

Corynebacterium glutamicum experiences a transient iron limitation during growth in minimal medium, which can be compensated by the external supplementation of protocatechuic acid (PCA). Although C. glutamicum is genetically equipped to form PCA from the intermediate 3-dehydroshikimate catalysed by 3-dehydroshikimate dehydratase (encoded by qsuB), PCA synthesis is not part of the native iron-responsive regulon.

View Article and Find Full Text PDF

Background: Lignocellulosic resources are promising feedstocks for the manufacture of bio-based products and bioenergy. However, the inherent recalcitrance of biomass to conversion into simple sugars currently hinders the deployment of advanced bioproducts at large scale. Lignin is a primary contributor to biomass recalcitrance as it protects cell wall polysaccharides from degradation and can inhibit hydrolytic enzymes via non-productive adsorption.

View Article and Find Full Text PDF