Biotechnol Biofuels Bioprod
October 2024
Background: Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue.
View Article and Find Full Text PDFModification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis.
View Article and Find Full Text PDFThe development of cereal crops with high nitrogen use efficiency (NUE) is a priority for worldwide agriculture. In addition to conventional plant breeding and genetic engineering, the use of the plant microbiome offers another approach to improving crop NUE. To gain insight into the bacterial communities associated with sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse lines under sufficient and deficient nitrogen (N).
View Article and Find Full Text PDFDespite growing evidence that plant growth-promoting bacteria can be used to improve crop vigor, a comparison of the different methods of delivery to determine which is optimal has not been published. An optimal inoculation method ensures that the inoculant colonizes the host plant so that its potential for plant growth-promotion is fully evaluated. The objective of this study was to compare the efficacy of three seed coating methods, seedling priming, and soil drench for delivering three bacterial inoculants to the sorghum rhizosphere and root endosphere.
View Article and Find Full Text PDFPrimary and secondary metabolites exuded from roots are key drivers of root-soil microbe interactions that contribute to the structure and function of microbial communities. Studies with model plants have begun to reveal the complex interactions between root exudates and soil microbes, but little is known about the influence of specialized exudates from crop plants. The aims of this work were to understand whether sorgoleone, a unique lipophilic secondary benzoquinone exuded only from the root hairs of sorghum, influences belowground microbial community structure in the field, to assess the effect of purified sorgoleone on the cultured bacteria from field soils, and to determine whether sorgoleone inhibits nitrification under field conditions.
View Article and Find Full Text PDFMuch effort has been placed on developing microbial inoculants to replace or supplement fertilizers to improve crop productivity and environmental sustainability. However, many studies ignore the dynamics of plant-microbe interactions and the genotypic specificity of the host plant on the outcome of microbial inoculation. Thus, it is important to study temporal plant responses to inoculation in multiple genotypes within a single species.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2021
Revealing the unexplored rhizosphere microbiome of plants in arid environments can help in understanding their interactions between microbial communities and plants during harsh growth conditions. Here, we report the first investigation of rhizospheric fungal and bacterial communities of , and using next-generation sequencing approaches. and grows in dry tropical and in arid conditions of Arabian Peninsula.
View Article and Find Full Text PDF