98%
921
2 minutes
20
Much effort has been placed on developing microbial inoculants to replace or supplement fertilizers to improve crop productivity and environmental sustainability. However, many studies ignore the dynamics of plant-microbe interactions and the genotypic specificity of the host plant on the outcome of microbial inoculation. Thus, it is important to study temporal plant responses to inoculation in multiple genotypes within a single species. With the implementation of high-throughput phenotyping, the dynamics of biomass and nitrogen (N) accumulation of four sorghum genotypes with contrasting N-use efficiency were monitored upon the inoculation with synthetic microbial communities (SynComs) under high and low-N. Five SynComs comprising bacteria isolated from field grown sorghum were designed based on the overall phylar composition of bacteria and the enriched host compartment determined from a field-based culture independent study of the sorghum microbiome. We demonstrated that the growth response of sorghum to SynCom inoculation is genotype-specific and dependent on plant N status. The sorghum genotypes that were N-use inefficient were more susceptible to the colonization from a diverse set of inoculated bacteria as compared to the N-use efficient lines especially under low-N. By integrating high-throughput phenotyping with sequencing data, our findings highlight the roles of host genotype and plant nutritional status in determining colonization by bacterial synthetic communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.14004 | DOI Listing |
Sci Total Environ
September 2025
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano 39100, Italy. Electronic address:
Nanoparticles (NPs) have emerged as transformative agents in agriculture, offering promising applications in nanofertilizers, nanopesticides, and soil amendments. However, significant knowledge gaps persist regarding the long-term impact of engineered NPs on soil health, including microbial networks and biogeochemical fluxes. Despite their potential to enhance nutrient use efficiency, promote crop resilience, and support sustainable farming, the interactions of NPs with soil matrices, especially their transformations, persistence, and ecological implications, are not fully explored.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
Metabolic associated fatty liver disease (MAFLD) is a globally recognized chronic metabolic disorder characterized by lipid metabolism abnormalities. Accumulating evidence indicates that exopolysaccharides (EPS) could modulate the gut microbiota structure and function to prevent and treat MAFLD. Herein, a novel EPS designated BVP1 was isolated from Bacillus velezensis CGMCC 24752.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Zhejiang Key Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Huadong Indust
Heparin, a clinically essential anticoagulant, has long been derived from animal sources, posing risks of contamination and supply chain instability. Bioengineered heparin, synthesized via microbial fermentation and enzymatic modification, offers a promising alternative with enhanced safety, homogeneity, and scalability. This review highlights recent advances in heparosan biosynthesis, enzymatic sulfation strategies, and analytical characterization for bioengineered heparin.
View Article and Find Full Text PDFJ Biotechnol
September 2025
Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Fermentation Microbiology, Ministry of Educat
Itaconic acid (IA), also known as methylene-butanedioic acid, is one of the top 12 platform chemicals in the world and demand for it is growing worldwide. The itaconic acid molecule contains one reactive double bond and two carboxyl groups, endowing it with chemical reactivity. It is widely used in fields such as light industry, agriculture, energy, and medical applications.
View Article and Find Full Text PDFEnviron Technol
September 2025
Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, México.
This research investigates the behavior of key components within aerobic and anoxic bioreactors in Biological Nitrogen Removal (BNR) bioprocesses. A mathematical model based on the Modified Ludzack-Ettinger (MLE) configuration is proposed. The model comprises an ensemble of ten differential equations derived from mass balances in the MLE system, complemented with a set of biokinetic models.
View Article and Find Full Text PDF