A novel extracellular mannan from Bacillus velezensis ameliorates metabolic-associated fatty liver disease by modulating gut microbiota in mice model.

Carbohydr Polym

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

Published: November 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic associated fatty liver disease (MAFLD) is a globally recognized chronic metabolic disorder characterized by lipid metabolism abnormalities. Accumulating evidence indicates that exopolysaccharides (EPS) could modulate the gut microbiota structure and function to prevent and treat MAFLD. Herein, a novel EPS designated BVP1 was isolated from Bacillus velezensis CGMCC 24752. Structural analysis revealed that BVP1 is a neutral α-mannan consisting of a backbone of 1,2,6-linked α-D-Manp, with branches composed of T-linked α-D-Manp, 1,2-linked α-D-Manp, and 1,3-linked α-D-Manp. Animal experiments showed that BVP1 significantly alleviated hepatic steatosis, liver injury and inflammation, and enhanced antioxidant activity in MAFLD mice. Single-nucleus RNA sequencing analysis revealed that BVP1 could restore HFD-induced imbalances in liver sinusoidal endothelial cells, hepatic stellate cells, macrophages and Kupffer cells by upregulating the expression of the lipid degradation gene Cps1 and downregulating the expression of the lipid synthesis gene Acsl1 in these cell subpopulations. Interestingly, BVP1 reshaped the gut microbiota and fecal metabolite profile by enriching beneficial bacteria and associated metabolites including salicylic acid, spermidine, and 4-hydroxyphenyl acetate. Fecal microbiota transplantation experiments verified that the anti-MAFLD effects are mediated by the BVP1-modified gut microbiota. Our findings highlight the potential of BVP1 as a promising therapeutic agent for MAFLD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2025.124150DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
bacillus velezensis
8
fatty liver
8
liver disease
8
analysis revealed
8
revealed bvp1
8
expression lipid
8
bvp1
6
microbiota
5
novel extracellular
4

Similar Publications

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

From the Lab to the Plate: How Gut Microbiome Science is Reshaping Our Diet.

J Nutr

September 2025

University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France; University Paris-Saclay, INRAE, MICALIS, 78350 Jouy-en-Josas, France. Electronic address:

This review explores the century-long trajectory of gut microbiome research and its contribution to shaping our modern diet. It further highlights the transformative potential of current discoveries to revolutionize future dietary habits and nutritional practices. From the pioneering work of E.

View Article and Find Full Text PDF

Background: Dietary fiber supports metabolic health via microbial fermentation, producing short-chain fatty acids (SCFAs). However, metabolic responses to fiber vary between individuals, potentially due to differences in gut microbiota composition. The Prevotella-to-Bacteroides (P/B) ratio has emerged as a potential biomarker for fiber responsiveness.

View Article and Find Full Text PDF

Lipid Metabolism and Immune Crosstalk in Fish Gut-Liver Axis: Insights from SOCS8 Knockout and Dietary Stress Models.

Fish Shellfish Immunol

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, State Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, Universi

Metaflammation, a chronic immune response triggered by metabolic dysregulation, poses significant threats to gut-liver homeostasis in aquaculture species. To understand the progression of metaflammation, it is crucial to examine the role of SOCS8 deficiency in socs8 zebrafish, as this species may serve as a disease model for metabolic disorders due to the gradual dysregulation of immunity, metabolism, and the gut microbiota observed in them. This study examines the immune-metabolic crosstalk in grass carp, subjected to soybean meal-induced enteritis, and in socs8 zebrafish under genetic and dietary stress.

View Article and Find Full Text PDF

Perioperative Neurocognitive Disorders: Advances in Molecular Mechanisms and Bioactive Molecules.

Ageing Res Rev

September 2025

Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA. Electronic address:

Perioperative neurocognitive disorders (PNDs) are common complications following surgery, especially in elderly patients, and are characterized by memory loss, attention deficits, and impaired executive function. The pathogenesis of PNDs involves a complex interplay of neuroinflammation, neurotransmitter imbalance, epigenetic modifications, and gut-brain axis disruption. This review summarizes the latest findings on the mechanisms underlying PNDs, with a focus on microglial activation, interleukin imbalance, and NLRP3 inflammasome-mediated pyroptosis.

View Article and Find Full Text PDF