Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-performance fluorescent probes stand as indispensable tools in fluorescence-guided imaging, and are crucial for precise delineation of focal tissue while minimizing unnecessary removal of healthy tissue. Herein, machine-learning-assisted strategy to investigate the current available xanthene dyes is first proposed, and a quantitative prediction model to guide the rational synthesis of novel fluorescent molecules with the desired pH responsivity is constructed. Two novel Si─rhodamine derivatives are successfully achieved and the cathepsin/pH sequentially activated probe Si─rhodamine─cathepsin-pH (SiR─CTS-pH) is constructed. The results reveal that SiR─CTS-pH exhibits higher signal-to-noise ratio of fluorescence imaging, compared to single pH or cathepsin-activated probe. Moreover, SiR─CTS-pH shows strong differentiation abilities for tumor cells and tissues and accurately discriminates the complex hepatocellular carcinoma tissues from normal ones, indicating its significant application potential in clinical practice. Therefore, the continuous development of xanthene dyes and the rational design of superior fluorescent molecules through machine-learning-assisted model broaden the path and provide more advanced methods to researchers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202404828DOI Listing

Publication Analysis

Top Keywords

rational design
8
xanthene dyes
8
fluorescent molecules
8
machine-learning-assisted rational
4
design si─rhodamine
4
si─rhodamine cathepsin-ph-activated
4
cathepsin-ph-activated probe
4
probe accurate
4
accurate fluorescence
4
fluorescence navigation
4

Similar Publications

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF

Rational design of Pt-integrated SnNbO/BiMoO monolayer S-scheme heterojunction for efficient ethylene removal toward fresh produce preservation.

J Colloid Interface Sci

September 2025

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:

Effective removal of ethylene (CH) during fruit and vegetables storage and transport remains a critical challenge for post-harvest preservation. Although S-scheme heterojunctions can improve charge separation and redox capacity for ethylene degradation, their efficiency is still restricted by limited carrier transfer and sluggish oxygen activation. Here, we rationally designed a novel 2D/2D SnNbO/BiMoO monolayer S-scheme heterojunction integrated with Pt co-catalyst to address these limitations.

View Article and Find Full Text PDF

Dynamic redistribution of intermediates induced by a local electric field microenvironment boosts efficient overall water electrolysis.

J Colloid Interface Sci

September 2025

State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.

Reaction intermediates (RI) are key factors that directly determine the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, a local electric field microenvironment was built in a FeNi and MoNi heterostructure (H-FeNiMo/NMF) to induce the redistribution of hydroxyls and protons on the metal sites during the OER and HER. H-FeNiMo/NMF requires only 270 and 155 mV to reach 100 mA cm in alkaline media for OER and HER, respectively.

View Article and Find Full Text PDF

Electroactive ceramic biomaterials on the principle of bone piezoelectricity towards advanced bone engineering.

Biomater Adv

September 2025

Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.

This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.

View Article and Find Full Text PDF

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF