Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Reaction intermediates (RI) are key factors that directly determine the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, a local electric field microenvironment was built in a FeNi and MoNi heterostructure (H-FeNiMo/NMF) to induce the redistribution of hydroxyls and protons on the metal sites during the OER and HER. H-FeNiMo/NMF requires only 270 and 155 mV to reach 100 mA cm in alkaline media for OER and HER, respectively. The catalyst exhibited satisfactory durability for 100 h at 2 A cm, with no significant attenuation in either the HER or OER. Experiments combined with computational studies demonstrated that the local electric field microenvironment can not only establish a rich OH interface during the OER but also build a rich H interface during the HER. Furthermore, the field effectively regulated the adsorption/desorption of RI during the reaction owing to the asymmetry of the charge distribution. This study offers a novel approach for the rational design of high-performance bifunctional electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.138955 | DOI Listing |