98%
921
2 minutes
20
Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.139469 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Australian Antarctic Division, Kingston, TAS 7050, Australia.
Antarctic krill () is the central prey species in the Southern Ocean food web, supporting the largest and fastest-growing fishery in the region, managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Climate change is threatening krill populations and their predators, while current catch limits do not take into account climate variability or krill population dynamics. In 2024, CCAMLR was unable to renew its spatial catch limits, highlighting the urgent need for improved management of the krill fishery to prevent any harm to the Southern Ocean ecosystem.
View Article and Find Full Text PDFFood Chem
August 2025
College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266404, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, PR China.
Shrimp sauce is a widely used aquatic seasoning, yet remains insufficient standardization in quality and flavor profiles. This study analyzed seven traditional shrimp sauces and one Antarctic krill-derived fermentation sauce (AK), focusing on basic quality parameters and key flavor compounds. The traditional shrimp sauces contained total protein (TP) ranging from 5.
View Article and Find Full Text PDFFood Chem
August 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, No.168, W
Calcium-chelating peptides (CCPs) represent promising strategies for addressing calcium deficiency, yet their chelating mechanisms require further elucidation. This study identified two novel CCPs, EEDLER and IVELEEE, from Antarctic krill through enzymatic hydrolysis combined with multi-step separation and purification, exhibiting calcium-chelating capacities of 12.1 ± 1.
View Article and Find Full Text PDFMol Ecol Resour
August 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Understanding diet composition is essential for unravelling trophic interactions in aquatic ecosystems. DNA metabarcoding, utilising various variable regions of the 18S rRNA gene, is increasingly employed to investigate zooplankton diet composition. However, accurate results depend on rapid inactivation of digestive enzymes and DNA nucleases through proper sample processing and preservation.
View Article and Find Full Text PDFFood Res Int
October 2025
College of Biochemical Engineering, Beijing Union University, Beijing, China. Electronic address:
Docosahexaenoic acid-containing phospholipid (PL-DHA) exhibits superior bioavailability compared to conventional DHA formulations. Derived primarily from Antarctic krill or enzymatic synthesis, PL-DHA's molecular architecture-specifically its position-dependent distribution within the glycerol backbone and polar headgroup variations-critically influences membrane dynamics. Sn-1 position DHA generates "U-shaped" configurations affecting membrane fluidity, while sn-2 position maintains "hairpin" conformations optimal for enzymatic recognition.
View Article and Find Full Text PDF