Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

COVID-19, the infectious disease caused by the most recently discovered coronavirus SARS- CoV-2, has caused millions of sick people and thousands of deaths all over the world. The viral positive-sense single-stranded RNA encodes 31 proteins among which the spike (S) is undoubtedly the best known. Recently, protein E has been reputed as a potential pharmacological target as well. It is essential for the assembly and release of the virions in the cell. Literature describes protein E as a voltage-dependent channel with preference towards monovalent cations whose intracellular expression, though, alters Ca homeostasis and promotes the activation of the proinflammatory cascades. Due to the extremely high sequence identity of SARS-CoV-2 protein E (E-2) with the previously characterized E-1 (i.e., protein E from SARS-CoV) many data obtained for E-1 were simply adapted to the other. Recent solid state NMR structure revealed that the transmembrane domain (TMD) of E-2 self-assembles into a homo-pentamer, albeit the oligomeric status has not been validated with the full-length protein. Prompted by the lack of a common agreement on the proper structural and functional features of E-2, we investigated the specific mechanism/s of pore-gating and the detailed molecular structure of the most cryptic protein of SARS-CoV-2 by means of MD simulations of the E-2 structure and by expressing, refolding and analyzing the electrophysiological activity of the transmembrane moiety of the protein E-2, in its full length. Our results show a clear agreement between experimental and predictive studies and foresee a mechanism of activity based on Ca affinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007222PMC
http://dx.doi.org/10.3389/fmolb.2024.1334819DOI Listing

Publication Analysis

Top Keywords

protein e-2
8
protein
7
e-2
5
electrophysiological properties
4
properties structural
4
structural prediction
4
prediction sars-cov-2
4
sars-cov-2 viroprotein
4
viroprotein covid-19
4
covid-19 infectious
4

Similar Publications

This study examined the effects of 24R,25-dihydroxyvitamin D (24R,25(OH)D) in estrogen-responsive laryngeal cancer tumorigenesis in vivo, the mechanisms involved, and whether the ability of the tumor cells to produce 24R,25(OH)D locally is estrogen-dependent. Estrogen receptor alpha-66 positive (ER+) UM-SCC-12 cells and ER- UM-SCC-11A cells responded differently to 24R,25(OH)D in vivo; 24R,25(OH)D enhanced tumorigenesis in ER+ tumors but inhibited tumorigenesis in ER- tumors. Treatment with 17β-estradiol (E) for 24 h reduced levels of CYP24A1 protein but increased 24R,25(OH)D production in ER+ cells; treatment with E for 9 min reduced CYP24A1 at 24 h and reduced 24R,25(OH)D production in ER- cells.

View Article and Find Full Text PDF

Intrinsic relationship between structural changes of different types of oyster proteins and flavor release after sous-vide treatment.

Int J Biol Macromol

September 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 266100, China; College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao, Shandong Province 266100, China; Sanya Oceanographic Instituti

Proteins, as typical macromolecules in aquatic products, have been demonstrated to play a crucial role in flavor release. The structural modifications of water-soluble proteins (WSP), salt-soluble proteins (SSP), and alkali-soluble proteins (ALSP) in oysters after Sous Vide (SV) heating, along with their interactions with flavor compounds, were systematically investigated. More significant alterations in secondary and tertiary structures in SSP were observed compared to WSP and ALSP following SV heating, accompanied by the highest degree of hydrophobicity and aggregation.

View Article and Find Full Text PDF

IRW, an antihypertensive peptide derived from ovotransferrin, has been shown to lower blood pressure in spontaneously hypertensive rats (SHRs) by upregulating angiotensin-converting enzyme 2 (ACE2). ACE2 is cardioprotective and a well-documented inhibitor of apoptosis. This study aims to investigate the anti-apoptotic effects of IRW and its underlying mechanism in SHRs' vasculature.

View Article and Find Full Text PDF

This study aims to identify the primary active components of Danshen (Salvia miltiorrhiza) and explore the potential mechanisms underlying its therapeutic effect on Kawasaki disease (KD). Active components of Danshen and their action targets were screened using traditional Chinese medicine systems pharmacology and SwissTargetPrediction databases. KD-related targets were retrieved from Online Mendelian Inheritance in Man, Pharmacogenomics Knowledge Base, and GeneCards databases.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) are known to disrupt neuroendocrine functions and impaired perinatal growth and reproductive health. However, the long-term reproductive toxicity of PBDEs following perinatal exposure remains poorly understood. This study investigated the effects of perinatal exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on reproductive development in adolescent offspring.

View Article and Find Full Text PDF