98%
921
2 minutes
20
While significant efforts in surface engineering have been devoted to the conversion process of lead iodide (PbI) into perovskite and top surface engineering of perovskite layer with remarkable progress, the exploration of residual PbI clusters and the hidden bottom surface on perovskite layer have been limited. In this work, a new strategy involving 1-butyl-3-methylimidazolium acetate (BMIMAc) ionic liquid (IL) additives is developed and it is found that both the cations and the anions in ILs can interact with the perovskite components, thereby regulating the crystallization process and diminishing the residue PbI clusters as well as filling vacancies. The introduction of BMIMAc ILs induces the formation of a uniform porous PbI film, facilitating better penetration of the second-step organic salt and fostering a more extensive interaction between PbI and the organic salt. Surprisingly, the oversized residual PbI clusters at the bottom surface of the perovskite layer completely diminish. In addition, advanced depth analysis techniques including depth-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) and bottom thinning technology are employed for a comprehensive understanding of the reduction in residual PbI. Leveraging effective PbI management and regulation of the perovskite crystallization process, the champion devices achieve a power conversion efficiency (PCE) of 25.06% with long-term stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202401476 | DOI Listing |
RSC Adv
September 2025
Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain
Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.
View Article and Find Full Text PDFNanomicro Lett
September 2025
College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.
The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
Perovskites have a large number of intrinsic defects and interface defects, which often lead to non-radiative recombination, and thus affect the efficiency of perovskite solar cells (PSCs). Introducing appropriate passivators between the perovskite layer and the transport layer for defect modification is crucial for improving the performance of PSCs. Herein, two positional isomers, 1-naphthylmethylammonium iodide (NMAI) and 2-naphthylmethylammonium iodide (NYAI) are designed.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China.
A machine learning-designed "supramolecular armor" imparts exceptional stability to perovskite quantum dots. A guanidinium crosslinker reinforces a β-cyclodextrin layer, creating a robust yet permeable interface that enables direct contact sensing in challenging aqueous environments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Advanced Materials and Devices Metrology Division, CSIR-National Physical Laboratory, K.S. Krishnan Marg, Pusa Road, New Delhi 110012, India.
Among all types of tandem solar cells (TSCs), the two-terminal (2T) monolithic silicon-perovskite TSCs have achieved an efficiency of approximately 34.85% and show potential for commercialization because they align with well-established silicon-based solar cell technology. This review focuses on 2T monolithic silicon-perovskite TSCs, discussing their deployment along with related technical and scientific issues.
View Article and Find Full Text PDF