Histone lactylation in macrophages is predictive for gene expression changes during ischemia induced-muscle regeneration.

Mol Metab

Laboratory of Exercise and Health, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. Electronic address:

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: We have previously shown that lactate is an essential metabolite for macrophage polarisation during ischemia-induced muscle regeneration. Recent in vitro work has implicated histone lactylation, a direct derivative of lactate, in macrophage polarisation. Here, we explore the in vivo relevance of histone lactylation for macrophage polarisation after muscle injury.

Methods: To evaluate macrophage dynamics during muscle regeneration, we subjected mice to ischemia-induced muscle damage by ligating the femoral artery. Muscle samples were harvested at 1, 2, 4, and 7 days post injury (dpi). CD45CD11bF4/80CD64 macrophages were isolated and processed for RNA sequencing, Western Blotting, and CUT&Tag-sequencing to investigate gene expression, histone lactylation levels, and histone lactylation genomic localisation and enrichment, respectively.

Results: We show that, over time, macrophages in the injured muscle undergo extensive gene expression changes, which are similar in nature and in timing to those seen after other types of muscle-injuries. We find that the macrophage histone lactylome is modified between 2 and 4 dpi, which is a crucial window for macrophage polarisation. Absolute histone lactylation levels increase, and, although subtly, the genomic enrichment of H3K18la changes. Overall, we find that histone lactylation is important at both promoter and enhancer elements. Lastly, H3K18la genomic profile changes from 2 to 4 dpi were predictive for gene expression changes later in time, rather than being a reflection of prior gene expression changes.

Conclusions: Our results suggest that histone lactylation dynamics are functionally important for the function of macrophages during muscle regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002880PMC
http://dx.doi.org/10.1016/j.molmet.2024.101923DOI Listing

Publication Analysis

Top Keywords

histone lactylation
32
gene expression
20
macrophage polarisation
16
expression changes
12
muscle regeneration
12
histone
9
predictive gene
8
ischemia-induced muscle
8
lactylation levels
8
muscle
7

Similar Publications

Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.

View Article and Find Full Text PDF

In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.

View Article and Find Full Text PDF

Lung cancer is a common malignancy that poses risks to human health and quality of life. The primary treatment options currently available include surgery, chemotherapy and radiotherapy. However, the aggressive metastatic nature of the disease combined with the development of drug and radiation resistance results in suboptimal survival outcomes.

View Article and Find Full Text PDF

Lactate, as an end-product of glycolysis, has been considered as a metabolic waste that participates in a few physiological functions. Recently, a novel study by Zhao's laboratory reported that lactate can serve as an epigenetic modification substrate, causing histone or nonhistone lysine residues to undergo lactylation, which then regulates gene transcription, translation, and protein function. Subsequent studies confirmed that lactylation plays an important role in a series of physiological and pathological processes, such as inflammation, cancer, and other biological processes.

View Article and Find Full Text PDF

Delactylation of H3K9 by Sirtuin6 inhibits MGMT transcription and reverses temozolomide resistance in glioblastoma.

Int J Biol Macromol

September 2025

Department of Neurosurgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412000, Hunan, China. Electronic address:

Glioblastoma (GBM) stands as one of the most formidable and deadly brain cancers, with temozolomide (TMZ) established as the primary chemotherapeutic agent. However, over 50 % of patients showed innate or acquired resistance. Sirtuins, a family of NAD-dependent deacetylases, have gained recognition as key regulators in shaping epigenetic landscapes and influencing chemoresistance across various cancers, yet their specific contribution to TMZ resistance in GBM has remained largely unexplored.

View Article and Find Full Text PDF