Occurrence of halogenated organic contaminants in surface sediments of the Yangtze River estuary and its adjacent marine area.

Environ Res

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area. The concentrations of Cl-PAHs ranged from 4.50 to 18.38 ng g (average 7.19 ng g), while those of Br-PAHs ranged from 4.80 to 61.18 ng g (average 14.11 ng g). The dominant Cl-PAH and Br-PAH in surface sediment were 9-chlorofluorene (17.79%) and 9-bromofluorene (58.49%), respectively. The distributions and compositions of Cl/Br-PAHs in the surface sediments varied considerably due to complex hydrodynamic and depositional conditions in the YRE and its adjacent marine area, as well as differences in physicochemical properties of different Cl/Br-PAHs. Positive matrix factorization revealed that the primary sources of Cl/Br-PAHs in the study area were e-waste dismantling (33.6%), waste incineration (23.2%), and metal smelting (11.0%). According to the risk quotient, the Cl/Br-PAHs in sediments posed no toxic risk to aquatic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118579DOI Listing

Publication Analysis

Top Keywords

surface sediments
12
adjacent marine
12
marine area
12
halogenated organic
8
organic contaminants
8
sediments yangtze
8
yangtze river
8
river estuary
8
cl/br-pahs
6
area
5

Similar Publications

Microplastics (MPs) are emerging vectors for hydrophobic organic pollutants, including polycyclic aromatic hydrocarbons (PAHs), in aquatic environments. Due to their high surface area and sorption potential, MPs can enhance the environmental persistence and bioavailability of toxic compounds, posing potential risks to both aquatic organisms and human health. This study investigates the distribution, sorption behavior, and effects on pollutant transport, distribution, and exposure pathways of PAHs-contaminated microplastics in two major Romanian rivers: the Prahova and Ialomita.

View Article and Find Full Text PDF

Highly efficient stabilization of arsenic in the contaminated sediments of Jiehe River by schwertmannite to inhibit arsenic release into overlying water.

J Hazard Mater

September 2025

Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Arsenic (As) represents the most typical associated element in gold mines, with As pollution frequently observed in regions of intensive gold mining activities, especially in Zhaoyuan City, renowned as the "Gold Capital" of China. In this study, schwertmannite (Sch), an iron oxyhydroxysulfate mineral with unique channel structure renowned for its As adsorption and stabilization capabilities in aqueous and soil systems, was synthesized and applied to evaluate its efficacy in stabilizing As for gold mining-impacted sediments. Besides, the functional mechanisms of Sch in mediating the redistribution and persistent immobilization of As in the sediments of Jiehe River in Zhaoyuan city were also explored.

View Article and Find Full Text PDF

Functional river restoration as a lever for adapting to climate change from an interdisciplinary emblematic showcase on the Upper Rhine.

J Environ Manage

September 2025

Laboratoire Image, Ville, Environnement (LIVE UMR 7362), Université de Strasbourg, CNRS, ENGEES, ZAEU LTER, 3 rue de l'Argonne, Strasbourg, 67083, France.

Many large rivers have been regulated for navigation improvement, hydro-electricity production, agricultural development and flood protection. River regulation alters both aquatic and riverine habitat dynamics as well as ecological functionalities and ecosystem services. This study aims to evaluate the impacts of river regulation performed along the Rhine as well as climate change to develop a process-based restoration strategy for the Rhinau-Taubergiessen area.

View Article and Find Full Text PDF

Spatial heterogeneity of microbial community structure and its environmental drivers in surface sediments of Erhai Lake.

PLoS One

September 2025

Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, College of Ecology and Environment, Southwest Forestry University, Kunming, China.

As a crucial plateau freshwater lake in Yunnan Province, China, Erhai Lake exhibits distinct environmental heterogeneity driven by its unique watershed characteristics and human activities, significantly influencing sediment microbial communities. This study investigated the spatial relationships between environmental factors and microbial community structures in surface sediments from the eastern, western, and northern shores using redundancy analysis (RDA) and Spearman correlation analysis. Results revealed that pH, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and redox potential (Eh) were key drivers of microbial community divergence.

View Article and Find Full Text PDF

Due to climate change, sea ice more commonly retreats over the shelf breaks in the Arctic Ocean, impacting sea ice-pelagic-benthic coupling in the deeper basins. Nitrogen fixation (the reduction of dinitrogen gas to bioavailable ammonia by microorganisms called diazotrophs) is reported from Arctic shelf sediments but is unknown from the Arctic deep sea. We sampled five locations of deep-sea (900-1500 m) surface sediments in the central ice-covered Arctic Ocean to measure potential nitrogen fixation through long-term (> 280 days) stable-isotope (N) incubations and to study diazotroph community composition through amplicon sequencing of the functional marker gene nifH.

View Article and Find Full Text PDF