Construction and Validation of a Nomogram Model to Predict the Severity of Pneumonia in Children.

J Inflamm Res

Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital, Tianjin University) Machang Compus, Tianjin, People's Republic of China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: This study aimed to develop a nomogram model for early prediction of the severe pneumonia (MPP) in children.

Methods: A retrospective analysis was conducted on children with MPP, classifying them into severe and general MPP groups. The risk factors for severe MPP were identified using Logistic Stepwise Regression Analysis, followed by Multivariate Regression Analysis to construct the nomogram model. The model's discrimination was evaluated using a receiver operating characteristic curve, its calibration with a calibration curve, and the results were visualized using the Hosmer-Lemeshow goodness-of-fit test.

Results: Univariate analysis revealed that age, duration of fever, length of hospital-stay, decreased sounds of breathing, respiratory rate, hypokalemia, and incidence of co-infection were significantly different between severe and general MPP. Significant differences ( < 0.05) were also observed in C-reactive protein, procalcitonin, peripheral blood lymphocyte count, neutrophil-to-lymphocyte ratio, ferritin, lactate dehydrogenase, alanine aminotransferase, interleukin-6, immunoglobulin A, and CD4 T cells between the two groups. Logistic Stepwise Regression Analysis showed that age, decreased sounds of breathing, respiratory rate, duration of fever (OR = 1.131; 95% CI: 1.060-1.207), length of hospital-stay (OR = 1.415; 95% CI: 1.287-1.555), incidence of co-infection (OR = 1.480; 95% CI: 1.001-2.189), ferritin level (OR = 1.003; 95% CI: 1.001-1.006), and LDH level (OR = 1.003; 95% CI: 1.001-1.005) were identified as risk factors for the development of severe MPP ( < 0.05 in all). The above factors were applied in constructing a nomogram model that was subsequently tested with 0.862 of the area under the ROC curve.

Conclusion: Age, decreased sound of breathing, respiratory rate, duration of fever, length of hospital-stay, co-infection with other pathogen(s), ferritin level, and LDH level were the significant contributors for the establishment of a nomogram model to predict the severity of MPP in children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895981PMC
http://dx.doi.org/10.2147/JIR.S447569DOI Listing

Publication Analysis

Top Keywords

nomogram model
20
regression analysis
12
duration fever
12
length hospital-stay
12
breathing respiratory
12
respiratory rate
12
model predict
8
predict severity
8
severe general
8
general mpp
8

Similar Publications

Utility and performance of cerebrospinal fluid cytology in discriminating central nervous system infections and brain tumors.

J Neurooncol

September 2025

Department of Neurology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, China.

Background And Objective: Differentiating central nervous system infections (CNSIs) from brain tumors (BTs) is difficult due to overlapping features and the limited individual indicators, and cerebrospinal fluid (CSF) cytology remains underutilized. To improve differential diagnosis, we developed a model based on 9 early, cost-effective cerebrospinal fluid parameters, including CSF cytology.

Methods: Patients diagnosed with CNSIs or BTs at Xiangya Hospital of Central South University between October 1st, 2017 and March 31st, 2024 were enrolled and divided into the training set and the test set.

View Article and Find Full Text PDF

Background: The optimal number of examined lymph nodes (ELN) for accurate staging and prognosis for esophageal cancer patients receiving neoadjuvant therapy remains controversial. This study aimed to evaluate the impact of ELN count on pathologic staging and survival outcomes and to develop a predictive model for lymph node positivity in this patient population.

Methods: Data were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and a multicenter cohort.

View Article and Find Full Text PDF

Background: Postoperative late recurrence (POLAR) after 2 years from the date of surgical resection of hepatocellular carcinoma (HCC) represents a unique surveillance and management challenge. Despite identified risk factors, individualized prediction tools to guide personalized surveillance strategies for recurrence remain scarce. The current study sought to develop a predictive model for late recurrence among patients undergoing HCC resection.

View Article and Find Full Text PDF

Objective: The risk factors of postoperative survival in T4N0M0 NSCLC patients are not fully understood. This study aimed to develop and validate a nomogram model for predicting postoperative survival in patients with T4N0M0 non-small cell lung cancer (NSCLC).

Methods: Clinicopathological data of patients were collected from Surveillance, Epidemiology, and End Results (SEER) database.

View Article and Find Full Text PDF

This study aimed to develop and validate a machine learning-based predictive model for assessing the risk of fear of childbirth in pregnant women during late pregnancy. A cross-sectional observational study was conducted from November 2022 to July 2023, involving 406 pregnant women. Six machine learning algorithms, including Lasso-assisted logistic regression (LR), random forest (RF), eXtreme Gradient Boosting (XGB), support vector machine (SVM), Bayesian network (BN), and k-nearest neighbors (KNN), were used to construct the models with 10-fold cross-validation.

View Article and Find Full Text PDF