Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA processing mechanisms, such as alternative splicing and RNA editing, have been recognized as critical means to expand the transcriptome. Chimeric RNAs formed by intergenic splicing provide another potential layer of RNA diversification. By analyzing a large set of RNA-Seq data and validating results in over 1,200 blood samples, we identified , a female-specific chimeric transcript. Intriguingly, both parental genes, are expressed in males and females. Mechanistically, is produced by cis-splicing between the two adjacent X-linked genes, originating from the inactive X chromosome. A female-specific chromatin loop, formed between the junction sites, facilitates the alternative splicing of its readthrough precursor. This unique chimeric transcript exhibits evolutionary conservation, evolving to be female-specific from non-human primates to humans. Furthermore, our investigation reveals that is enriched in the myeloid lineage and plays a regulatory role in myeloid differentiation. Notably, female COVID-19 patients who tested negative for this chimeric transcript displayed higher counts of neutrophils, highlighting its potential role in disease pathogenesis. These findings support the notion that chimeric RNAs represent a new repertoire of transcripts that can be regulated independently from the parental genes, and a new class of RNA variance with potential implications in sexual dimorphism and immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888732PMC
http://dx.doi.org/10.1101/2024.02.13.580120DOI Listing

Publication Analysis

Top Keywords

chimeric transcript
12
sexual dimorphism
8
alternative splicing
8
chimeric rnas
8
parental genes
8
rna
5
chimeric
5
sex-specific chimeric
4
chimeric rna
4
rna role
4

Similar Publications

Large B cell lymphoma microenvironment archetype profiles.

Cancer Cell

July 2025

Department of Lymphoma and Myeloma, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA; Lymphoid Malignancies Program, UT MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA. Electronic address: mgreen5@mdander

Large B cell lymphomas (LBCL) are clinically and biologically heterogeneous lymphoid malignancies with complex microenvironments that are central to disease etiology. Here, we have employed single-nucleus multiome profiling of 232 tumor and control biopsies to characterize diverse cell types and subsets that are present in LBCL tumors, effectively capturing the lymphoid, myeloid, and non-hematopoietic cell compartments. Cell subsets co-occurred in stereotypical lymphoma microenvironment archetype profiles (LymphoMAPs) defined by; (1) a sparsity of T cells and high frequencies of cancer-associated fibroblasts and tumor-associated macrophages (FMAC); (2) lymph node architectural cell types with naive and memory T cells (LN); or (3) activated macrophages and exhausted CD8 T cells (TEX).

View Article and Find Full Text PDF

Metastatic and relapsed osteosarcoma (OS) remains difficult to treat despite advanced surgical techniques, intensified chemotherapy, and targeted therapies. Adoptive immunotherapies such as chimeric antigen receptor (CAR) T cells, are in their nascent stage, but remain a viable therapeutic strategy for patients with aggressive solid tumors such as OS. Folate receptor- (FOLR1) has been functionally implicated in OS pathophysiology, providing rationale as a potential therapeutic target.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a CAG/polyglutamine (polyQ) repeat expansion disorder in which the mutant androgen receptor (AR) protein triggers progressive degeneration of the neuromuscular system in men. As the misfolded polyQ AR is the proximal mediator of toxicity, therapeutic efforts have focused on targeting the mutant protein, but these prior efforts have met with limited success in SBMA patients. Here, we examine the efficacy of small molecule AR proteolysis-targeting chimera (PROTAC) degraders that rapidly and potently promote AR ubiquitination and degradation by the proteasome.

View Article and Find Full Text PDF

Background: Canine parvovirus (CPV) poses a severe threat to canine health, necessitating the development of safer and more effective vaccines. While traditional vaccines carry risks of virulence reversion and environmental contamination, subunit vaccines-especially neutralizing epitope vaccines-offer promising alternatives by eliciting targeted immune responses with enhanced safety.

Methods: We employed bacterial display technology to express 11 overlapping CPV VP2 gene fragments on the periplasmic membrane of E.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) elicits a sustained innate immune response involving both resident microglia and infiltrating peripheral immune cells. However, the influence of peripheral immune-derived signals on microglial dynamics and functional recovery remains poorly understood. We previously identified the receptor tyrosine kinase EphA4 as a regulator of acute neuroinflammation following TBI.

View Article and Find Full Text PDF