98%
921
2 minutes
20
Background: β-thalassemia is a blood disorder caused by autosomal mutations. Gene modulation therapy to activate the γ-globin gene to induce fetal hemoglobin (HbF) synthesis has become a new option for the treatment of β-thalassemia. MicroRNA-210 (miR-210) contributes to studying the mechanism regulating γ-globin gene expression and is a potential biomarker for rapid β-thalassemia screening. Traditional miRNA detection methods perform well but necessitate complex and time-consuming miRNA sample processing. Therefore, the development of a sensitive, accurate, and simple miRNA level monitoring method is essential.
Results: We have developed a non-enzymatic surface-enhanced Raman scattering (SERS) biosensor utilizing a signal cascade amplification of catalytic hairpin assembly reaction (CHA) and proximity hybridization-induced hybridization chain reaction (HCR). Au@Ag NPs were used as the SERS substrate, and methylene blue (MB)- modified DNA hairpins were used as the SERS tags. The SERS assay involved two stages: implementing the CHA-HCR cascade signal amplification strategy and conducting SERS measurements on the resulting product. The HCR was started by the products of target-triggered CHA, which formed lengthy nicked double-stranded DNA (dsDNA) on the Au@Ag NPs surface to which numerous SERS tags were attached, leading to a significant increase in the SERS signal intensity. High specificity and sensitivity for miR-210 detection was achieved by monitoring MB SERS intensity changes. The suggested SERS biosensor has a low detection limit of 5.13 fM and is capable of detecting miR-210 at concentration between 10 fM and 1.0 nM.
Significance: The biosensor can detect miR-210 levels in the erythrocytes of β-thalassemia patients, enabling rapid screening for β-thalassemia and suggesting a novel approach for investigating the regulation mechanism of miR-210 on γ-globin gene expression. In the meantime, this innovative technique has the potential to detect additional miRNAs and to become an important tool for the early diagnosis of diseases and for biomedical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342255 | DOI Listing |
Virology
September 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:
Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.
View Article and Find Full Text PDFAnal Chem
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Second Provincial General Hospital, The Fifth Affiliated Hospital, Guangzhou Red Cross Hospital, College of Pharmacy, Jinan University, Guangzhou 510632, China.
Rapid and precise detection of () is crucial for early diagnosis, treatment of infectious ailments, and controlling outbreaks. Herein, we present a rapid, streamlined, and sensitive method for screening based on a hollow copper/platinum interspersed graphene oxide nanosheets (Cu/Pt-GO)-mediated cascade responsiveness strategy. The Cu/Pt-GO nanozymes were proposed to catalyze the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to colored oxidized TMB (oxTMB) with enhanced SERS signals, achieving colorimetric/SERS dual-model detection.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:
Background: Entropy-Driven Circuits (EDC), distinguished by their spontaneous operation and absence of enzymatic reactions, represent a superior strategy for integration with CRISPR/Cas systems, as they obviate the potential for interference among various enzymes during the process of DNA amplification and CRISPR/Cas system integration. Due to the wide band gap of TiO, its response to visible light is limited, and owing to its high crystallinity and exceptionally stable crystal lattice, the charge transfer (CT) process in TiO is suboptimal.
Results: In this study, lychee-like Fe-TiO was firstly prepared to serve as Raman enhanced substrate, facilitating exciton capture and separation to exhibit an excellent Surface-enhanced Raman spectroscopy (SERS) performance.
Biosens Bioelectron
December 2025
State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China. Electronic address:
Accurate quantification of cancer-related miRNA in exosomes offers a promising approach for early and effective cancer diagnosis. However, reliably detecting extremely low-abundance exosomal miRNAs in complex bodily fluids remains a significant challenge. Herein, a CRISPR/Cas13a triggered-DNA walker amplified SERS sensor has been proposed for detection of cancer cell-derived exosomal miRNA-106a.
View Article and Find Full Text PDFBiosens Bioelectron
December 2025
Integrative Biomedical Materials and Nanomedicine Laboratory, Medicine and Life Sciences Department, Universitat Pompeu Fabra, Carrer Del Doctor Aiguader 88, 08003, Barcelona, Spain. Electronic address:
Labile Zn is emerging as a quantitative driver, not just a biomarker, of metastasis, yet rapid, second-resolved intracellular measurement remains elusive. Here we engineer terpyridine-functionalised, hollow Au@SiO nanocapsules (NCs@TPY) and couple their SERS signal to cell-specific partial-least-squares (PLS) chemometrics, yielding an 8-log dynamic range (10 - 10 M), a low-nanomolar detection limit and ≤4.5 % cross-validated error while rejecting Ca/Mg interference.
View Article and Find Full Text PDF