98%
921
2 minutes
20
Type II polyketide synthases (PKSs) normally synthesize polycyclic aromatic compounds in nature, and the potential to elaborate further diverse skeletons was recently revealed by the discovery of a polyene subgroup. Here, we show a type II PKS machinery for the biosynthesis of a five-membered nonaromatic skeleton contained in the nonproteinogenic amino acid cispentacin and the plant toxin coronatine. We successfully produce cispentacin in a heterologous host and reconstruct its biosynthesis using seven recombinant proteins in vitro. Biochemical analyses of each protein reveal the unique enzymatic reactions, indicating that a heterodimer of type II PKS-like enzymes (AmcF-AmcG) catalyzes a single C elongation as well as a subsequent cyclization on the acyl carrier protein (AmcB) to form a key intermediate with a five-membered ring. The subsequent reactions, which are catalyzed by a collection of type II PKS-like enzymes, are also peculiar. This work further expands the definition of type II PKS and illuminates an unexplored genetic resource for natural products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698177 | PMC |
http://dx.doi.org/10.1038/s41467-023-43731-z | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.
Type III polyketide synthases (T3PKSs) are enzymes that produce diverse compounds of ecological and clinical importance. While well-studied in plants, only a handful of T3PKSs from fungi have been characterised to date. Here, we developed a comprehensive workflow for kingdom-wide characterisation of T3PKSs.
View Article and Find Full Text PDFOrg Lett
September 2025
Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
Six new spirotetronate polyketides, chrolactomycins A-F (-), and the known chrolactomycin () were isolated and identified from TX15. Chrolactomycins D-F (-) feature an unprecedented dimeric skeleton bridged by a rare barbiturate unit. Sequencing and characterization of a type I polyketide synthase biosynthetic gene cluster led to the proposal of a biosynthetic pathway for -.
View Article and Find Full Text PDFPhysiol Plant
September 2025
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.
Leymus chinensis is a perennial grass with remarkable adaptability and forage quality. It is the dominant species on the saline-alkali land in the Songnen Plain in Northeast China, where two ecotypes naturally grow: the grey-green (GG) and yellow-green (YG) genotypes, named after the leaf color. However, the differences in morphology and adaptability between the GG and YG ecotypes are not elucidated.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States.
The value of microbial natural product pathways extends beyond the chemicals they produce, as the enzymes they encode can be harnessed as biocatalysts. Microbial type II polyketide synthases (PKSs) are particularly noteworthy, as these enzyme assemblies produce complex polyaromatic pharmacophores. Combinatorial biosynthesis with type II PKSs has been described as a promising route for accessing never-before-seen bioactive molecules, but this potential is stymied in part by the lack of functionally compatible noncognate proteins across type II PKS systems.
View Article and Find Full Text PDFBiotechnol J
September 2025
Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Schizochytrium sp., a marine alga prized for docosahexaenoic acid (DHA), was subjected to UV mutagenesis to boost industrial yields. The stable mutant UV1-3 achieved 5.
View Article and Find Full Text PDF