Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Green synthesis of stable metal-organic frameworks (MOFs) with permanent and highly ordered porosity at room temperature without needing toxic and harmful solvents and long-term high-temperature reactions is crucial for sustainable production. Herein, a rapid and environmentally friendly synthesis strategy is reported to synthesize the complex topological bismuth-based-MOFs (Bi-MOFs), [Bi(CHO)(HO)] (denoted CAU-17), in water under ambient conditions by surfactant-mediated sonochemical approach, which could also be applicable to other MOFs. This strategy explores using cetyltrimethylammonium bromide (CTAB) amphiphilic molecules as structure-inducing agents to control the removal of non-coordinated water (dehydration) and enhance the degree of deprotonation of the ligands, thereby regulating the coordination and crystallization in aqueous solutions. In addition, another two new strategies for synthesizing CAU-17 by crystal reconstruction and one-step synthesis in binary solvents are provided, and the solvent-induced synthesis mechanism of CAU-17 is studied. The as-prepared CAU-17 presents a competitive iodine capture capability and effective delivery of the antiarrhythmic drug procainamide (PA) for enteropatia due to the broad pH tolerance and the unique phosphate-responsive destruction in the intestine. The findings will provide valuable ideas for the follow-up study of surfactant-assisted aqueous synthesis of MOFs and their potential applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202307484DOI Listing

Publication Analysis

Top Keywords

green synthesis
8
synthesis
6
surfactant-mediated crystalline
4
crystalline structure
4
structure evolution
4
evolution enabling
4
enabling ultrafast
4
ultrafast green
4
synthesis bismuth-mof
4
bismuth-mof aqueous
4

Similar Publications

Recent Advances in the Isolation, Bioactivity, Biosynthesis, and Total Synthesis of Hamigerans.

J Nat Prod

September 2025

Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou 646000, P. R. China.

Hamigerans, a class of diterpenoid natural products isolated from marine sponge , are characterized by distinctive 6-6-5 or 6-7-5 tricyclic skeletons. These compounds have been a focal point for synthetic chemists in recent years due to their remarkable biological activities. In this Review, we summarize the progress made in the isolation, biosynthesis, bioactivity, and total synthesis of hamigerans, with particular emphasis on synthetic studies published since 2013.

View Article and Find Full Text PDF

Living with temperature changes: Salicylic acid at the crossroads of plant immunity and temperature resilience.

Sci Adv

September 2025

Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.

Salicylic acid (SA) is a key defense hormone shaped by temperature. High temperatures suppress, while low temperatures enhance, SA biosynthesis and signaling, thereby influencing plant immunity and temperature resilience. This review synthesizes current understanding of how temperature modulates SA pathways and their cross-talk with other hormones to balance growth and defense.

View Article and Find Full Text PDF

Locusts adopt IP as a second messenger for olfactory signal transduction.

Sci Adv

September 2025

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China.

Insects, unlike vertebrates, use heteromeric complexes of odorant receptors and co-receptors for olfactory signal transduction. However, the secondary messengers involved in this process are largely unknown. Here, we use the olfactory signal transduction of the aggregation pheromone 4-vinylanisole (4VA) as a model to address this question.

View Article and Find Full Text PDF

Neuroinflammation within the central nervous system (CNS) is recognized as a critical pathological process in meningitic Escherichia coli (E. coli) infection, leading to severe neurodegenerative disorders and long-term sequelae. Astrocyte reactivity plays a pivotal role in driving the neuroinflammatory cascade in response to pathological stimuli from peripheral sources or other cellular components of the CNS.

View Article and Find Full Text PDF

CpG-A induces liquid-liquid phase separation of HMGB1 to activate the RAGE-mediated inflammatory pathway.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.

View Article and Find Full Text PDF