Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A class I PCF type protein, TCP4, was identified as a transcription factor associated with both grain size and tillering through a DNA pull-down-MS assay combined with a genome-wide association study. This transcription factor was found to have a significant role in the variations among the 533 rice accessions, dividing them into two main subspecies. A Tourist-like miniature inverted-repeat transposable element (MITE) was discovered in the promoter of TCP4 in japonica/geng accessions (TCP4M+), which was found to suppress the expression of TCP4 at the transcriptional level. The MITE-deleted haplotype (TCP4M-) was mainly found in indica/xian accessions. ChIP-qPCR and EMSA demonstrated the binding of TCP4 to promoters of grain reservoir genes such as SSIIa and Amy3D in vivo and in vitro, respectively. The introduction of the genomic sequence of TCP4M+ into different TCP4M- cultivars was found to affect the expression of TCP4 in the transgenic rice, resulting in decreased expression of its downstream target gene SSIIa, increased tiller number, and decreased seed length. This study revealed that a Tourist-like MITE contributes to subspecies divergence by regulating the expression of TCP4 in response to environmental pressure, thus influencing source-sink balance by regulating starch biosynthesis in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erad467DOI Listing

Publication Analysis

Top Keywords

expression tcp4
12
miniature inverted-repeat
8
inverted-repeat transposable
8
transposable element
8
grain size
8
transcription factor
8
tcp4
6
insertion miniature
4
element promoter
4
promoter ostcp4
4

Similar Publications

Streamlining the defense mechanism involving miRNA/mRNA and phytohormones during mycorrhiza-fusarium infecting tomato roots.

Braz J Biol

April 2025

Academy of Scientific Research and Technology - ASRT, National Biotechnology Network of Expertise, Egypt.

This study was carried out to identify the relationship between miRNAs/ targets and phytohormone-related genes associated with Rhizophagus irregularis/ F. oxysporum f. sp.

View Article and Find Full Text PDF

Late-maturing hybrid citrus is a significant fruit that combines the best traits of both parents and is highly prized for its unique flavor. Not only can organic acids alter the flavor of citrus pulp, but they are also essential for cellular metabolism, energy conversion, and maintaining the acidbase balance in plant tissues. Although organic acids play a key role in the quality formation of citrus fruits, there is still insufficient research on the metabolic processes of organic acids in late-maturing hybrid citrus varieties.

View Article and Find Full Text PDF

Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

Plant Physiol Biochem

March 2025

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.

View Article and Find Full Text PDF
Article Synopsis
  • TCP transcription factors are crucial for plant growth and stress responses, but their function in the cold stress response of L. is not well understood.
  • This research identified a gene family in L., revealing 19 members with varying molecular weights and unstable proteins localized in the nucleus.
  • The study found that these genes contain elements responsive to hormones, light, and stress, with significant differential expression during cold stress and other conditions, suggesting they are key regulators in stress response mechanisms.
View Article and Find Full Text PDF

Phytoplasmas are obligate intracellular pathogens that profoundly modify the development, physiology and behavior of their hosts by secreting effector proteins that disturb signal pathways and interactions both in plant and insect hosts. The characterization of effectors and their host-cell targets was performed for only a few phytoplasma species where it was shown that the SAP11 effector alters plant morphology by destabilizing plant transcription factors: TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCPs). To explore the possible role of the SAP11-like effector from ' P.

View Article and Find Full Text PDF