Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Late-maturing hybrid citrus is a significant fruit that combines the best traits of both parents and is highly prized for its unique flavor. Not only can organic acids alter the flavor of citrus pulp, but they are also essential for cellular metabolism, energy conversion, and maintaining the acidbase balance in plant tissues. Although organic acids play a key role in the quality formation of citrus fruits, there is still insufficient research on the metabolic processes of organic acids in late-maturing hybrid citrus varieties. In this study, three late-maturing citrus varieties with different acidity levels, namely (HJ), (QJ), and (CJ), were selected to systematically investigate the metabolic regulation mechanism of organic acids in late-maturing citrus through transcriptome sequencing technology, combined with physiological and biochemical analyses. This study revealed gene expression differences related to organic acid synthesis and degradation. Through gene expression profiling, several genes closely associated with organic acid metabolism were identified, and a preliminary gene network related to the regulation of organic acid metabolism was constructed. The results showed that there were significant differences in the organic acid metabolic pathways between different varieties and growth stages of the fruit. Specifically, HJ had a higher TA content than QJ and CJ, primarily due to the significantly higher citric acid and malic acid contents in HJ compared to the other two varieties. Further analysis revealed that four gene modules showed a high correlation with the levels of major organic acids in the fruits. The genes involved in these modules are closely related to organic acid synthesis, degradation, and transport. Additionally, we also identified several key genes (, , , , , , and ) that might be involved in the regulation of organic acid metabolism. The functions of these genes could have a significant impact on the expression levels changes of enzymes related to organic acid metabolism. This study provides a foundation for exploring the intrinsic mechanisms regulating the organic acid content in late-maturing hybrid citrus fruits and contributes to the functional research of organic acids in late-maturing hybrid citrus and the molecular design of high-quality varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765802PMC
http://dx.doi.org/10.3390/ijms26020803DOI Listing

Publication Analysis

Top Keywords

organic acid
36
organic acids
24
acid metabolism
20
late-maturing hybrid
20
hybrid citrus
20
organic
15
regulation organic
12
citrus varieties
12
acids late-maturing
12
acid
11

Similar Publications

Photofunctionalization of Light Alkanes by FeO/BCN at 12 °C.

J Am Chem Soc

September 2025

State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.

The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.

View Article and Find Full Text PDF

In recent years, the hydrazide skeleton, as a pivotal class of nitrogen-containing structures, has garnered considerable attention in medicinal chemistry and organic synthesis owing to its unique chemical versatility and broad-spectrum biological activities. In this study, a series of thiazole-containing benzoylhydrazine derivatives -, -, and - with structural divergence from conventional hydrazide-based molecular frameworks were designed, synthesized, and evaluated for their antifungal/antioomycete activities. The antifungal/antioomycete assay showed that some of the targeted compounds exhibited remarkable and broad-spectrum antifungal activities.

View Article and Find Full Text PDF

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.

View Article and Find Full Text PDF

The development of innovative bioprocessing technologies has resulted from the growing global need for sustainable forms of energy and environmentally friendly waste treatment. In this review, we focus on the combined electro-fermentation and microbial fuel cells, as they form a hybrid system that simultaneously addresses wastewater treatment, bioenergy production, and bioplastics. Even though microbial fuel cells produce electricity out of the organic waste by the use of electroactive microorganisms, electro-fermentation improves the microbial pathways through the external electrochemical management.

View Article and Find Full Text PDF