98%
921
2 minutes
20
Silk nanofibers (SNF) have great applications in high-performance functional nanocomposites due to their excellent mechanical properties, biocompatibility, and degradability. However, the preparation of SNF by traditional methods often requires the use of some environmentally harmful or toxic reagents, limiting its application in green chemistry. In this paper, we successfully prepared SNF using natural silk as raw material and solvent stripping technology by adjusting the solvent concentration and solution ratio (the diameter of about 120 nm). Using the above SNFs as raw materials, SNF membranes were prepared by vacuum filtration technology. In addition, we prepared an SNF/MXene nanocomposite material with excellent humidity sensitivity by simply coating MXene nanosheets with silk fibers. The conductivity of the material can approach 1400.6 S m with excellent mechanical strength (51.34 MPa). The SNF/MXene nanocomposite material with high mechanical properties, high conductivity, and green degradability can be potentially applied in the field of electromagnetic interference (EMI) shielding, providing a feasible approach for the development of functional nanocomposite materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648990 | PMC |
http://dx.doi.org/10.3390/ma16216960 | DOI Listing |
Eur J Pharm Biopharm
September 2025
Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
In order to be able to administer efficient probiotic formulations, it is necessary to process the respective microorganisms gently into suitable dosage forms such as tablets maintaining their viability. In previous studies, the process chain consisting of fluidized bed granulation for life-sustaining drying of Saccharomyces cerevisiae as well as subsequent processing into tablets was investigated. Granules based on dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials were produced and tableted, and physical-mechanical as well as microbiological tablet properties were evaluated.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China.
With growing public attention to environmental issues and sustainable development, biodegradable bio-based plastics have attracted widespread interest. This study reveals the chemical-physical synergistic regulation mechanism of biodegradable PLA/PBAT blends through the synergistic modification of epoxidized natural rubber (ENR) and epoxy chain extender (ADR). Interfacial interaction analysis shows that PBAT tends to encapsulate ENR to form aggregates.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Food Science, Northeast Agricultural University, Harbin, 150030, China; College of Food Science and Engineering, Jilin University, Changchun, 130062, China; Heilongjiang Province China-Mongolia-Russia Joint R&D Laboratory for Bio-processing and Equipment for Agricultural Products (Interna
This study developed a novel self-assembled bigel by combining a chestnut starch (CS) hydrogel with a γ-oryzanol/β-sitosterol (γ-ORY/β-SIT) oleogel. The influence of the hydrogel to oleogel ratio on the macro and micro structures, mechanical properties and thermal stability of the bigels was examined, and its potential as a healthier solid fat substitute was further explored. The results indicated that as the proportion of hydrogel increased (10 %-50 %), all bigels maintained a consistent semi-solid structure without any phase separation.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:
Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.
View Article and Find Full Text PDFBioorg Chem
September 2025
Post Graduate and Research Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi 613 503, Thanjavur, India. Electronic address:
The research employed zirconyl oxychloride as a catalyst in a reaction involving pyrazole aldehyde, (thio)urea, and acetyl acetone to establish an aqueous approach for synthesizing 3,4-dihydropyrimidinone derivatives (compounds 4a-j) with potential claims as antidiabetic agents. FT-IR, HR-MS, H NMR and C NMR were employed to analyze the synthesized compounds. The HOMO-LUMO analysis was performed to evaluate the stability of the synthesized derivatives.
View Article and Find Full Text PDF