98%
921
2 minutes
20
Immune checkpoint blockade (ICB) therapy, particularly antibodies targeting the programmed death receptor 1 (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, its efficacy as a standalone therapy remains limited. Although ICB therapy in combination with chemotherapy shows promising therapeutic responses, the challenge lies in amplifying chemotherapy-induced antitumor immunity effectively. This relies on efficient drug delivery to tumor cells and robust antigen presentation by dendritic cells (DCs). Here, we developed tumor-repopulating cell (TRC)-derived microparticles with exceptional tumor targeting to deliver doxorubicin (DOX@3D-MPs) for improve anti-PD-1 therapy. DOX@3D-MPs effectively elicit immunogenic tumor cell death to release sufficient tumor antigens. Heat shock protein 70 (HSP70) overexpressed in DOX@3D-MPs contributes to capturing tumor antigens, promoting their phagocytosis by DCs, and facilitating DCs maturation, leading to the activation of CD8 T cells. DOX@3D-MPs significantly enhance the curative response of anti-PD-1 treatment in large subcutaneous H22 hepatoma, orthotopic 4T1 breast tumor and Panc02 pancreatic tumor models. These results demonstrate that DOX@3D-MPs hold promise as agents to improve the response rate to ICB therapy and generate long-lasting immune memory to prevent tumor relapse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598206 | PMC |
http://dx.doi.org/10.1038/s41392-023-01658-3 | DOI Listing |
Urol Oncol
September 2025
Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY. Electronic address:
Purpose: Immune checkpoint blockade (ICB) has transformed outcomes for patients with metastatic renal cell carcinoma (mRCC) and has impacted the timing and use of cytoreductive nephrectomy (CN). As ICB responses vary, we evaluated whether radiographic and radiomic biomarkers were associated with clinical and pathological outcomes.
Methods: This retrospective cohort study included ICB-treated mRCC patients without upfront CN.
Front Immunol
September 2025
Wound Healing Center, Peking University Third Hospital, Beijing, China.
Background And Objective: Melanoma exhibits profound biological complexity, driven by immune evasion, phenotypic plasticity, and resistance to therapy. While programmed cell death (PCD) shapes tumor-immune interactions, its mechanistic landscape in melanoma remains incompletely defined. This study aims to comprehensively characterize PCD-related signatures and their associations with tumor heterogeneity, prognosis, and immunotherapeutic outcomes.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
Purpose: Cancer remains a major global cause of death, with rising incidence influenced by environmental factors. The THOC5 gene, part of the THO complex, has emerged as a potential regulator in cancer biology. This study investigates THOC5 expression across various cancers, its role in prognosis, and its potential therapeutic implications, particularly in liver hepatocellular carcinoma (LIHC).
View Article and Find Full Text PDFFront Immunol
September 2025
The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide, with limited responses to immune checkpoint blockade (ICB) therapies in most patients. Increasing evidence indicates that the tumor immune microenvironment (TIME) plays a crucial role in immunotherapy outcomes. Among various metabolic abnormalities in the TIME, dysregulated lipid metabolism has emerged as a critical determinant of immune cell fate, differentiation, and function.
View Article and Find Full Text PDFAdv Mater
September 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Glucose consumption by tumors induces metabolic restriction of T cells, which results in immune evasion and tumor progression. Regulating cellular metabolism represents a promising strategy to enhance cancer immunotherapy; however, redirecting glucose utilization from tumor cells to T cells is challenging. Herein, the activation of cytotoxic T cells using engineered peptide coacervates (PCs) containing interferon alpha (IFNα) and membranized with metal-phenolic networks (MPNs) (PC-IFNα@MPNs), which promote glucose uptake and glycolysis, is reported.
View Article and Find Full Text PDF