98%
921
2 minutes
20
Fluoride (F) stress is one of the major environmental pollutant, affecting plant growth, development and production, globally. Acquisition of eco-friendly F stress reliever seems to be the major concern these days. Consequently, application of engineered nanomaterials (ENMs) has been increasing to improve agri-economy. However, the impact of silicon nanoparticles (Si NPs) on mitigation of F stress has not been investigated yet. Thus, the present study was conducted to compare their protective roles against F stress by improving diurnal photosynthetic efficiency of sugarcane plant leaves. An ability of sugarcane (Saccharum officinarum cv. GT44) plants to ameliorate F toxicity assessed through soil culture medium. After an adaptive growth phase, 45 days old plants select to examine F mitigative efficacy of silicon nanoparticles (SiNPs: 0, 100, 300 and 500 ppm) on sugarcane plants, irrigated by F contaminated water (0, 100, 200 and 500 ppm). Our results strongly favour that SiNPs enhanced diurnally leaf photosynthetic gas exchange viz., photosynthesis (∼1.0-29%), stomatal conductance (∼3.0-90%), and transpiration rate (∼0.5-43%), significantly, as revealed by increments in photochemical chlorophyll fluorescence efficiency of PS II linked with performance index and photosynthetic pigments during F stress. To the best of our knowledge, this is the first investigation to explore the impact of SiNPs improving and/or maintaining the diurnal photosynthetic responses in sugarcane plants in response to F stress. It may also precisely unlayer action of molecular mechanism(s) mediated by SiNPs, found essential for mitigation of F-toxicity to explore nano-phytoremediation approach for crop improvement and agri-economy as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.108089 | DOI Listing |
Beilstein J Nanotechnol
September 2025
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
In this study, silicon nanoparticles (NPs) were produced by pulsed laser ablation in a liquid, aiming to investigate the influence of a laser beam profile on the properties of the resultant NPs. Morphology, inner structure, and phase composition of the formed NPs were characterized by means of ultraviolet-visible spectroscopy, high-resolution transmission electron microscopy, and Raman and photoluminescence spectroscopies, and the correlation of the NP properties with the laser beam profile was studied. Three different beam profiles were selected, namely, a Bessel beam produced using an axicon, an annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.
J Hazard Mater
September 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C
Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.
View Article and Find Full Text PDFMikrochim Acta
September 2025
The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Binhu Hospital of Hefei, Hefei, 230061, P. R. China.
Lung cancer, as one of the cancers with the highest morbidity and mortality rates in the world, requires accurate detection of its vital serum marker, neuron-specific enolase (NSE), which is a key challenge for early detection of lung cancer. However, traditional chemiluminescence immunoassay (CLIA) methods rely on labeled antibodies (Abs) and suffer from complex operations and high costs. In this work, a label-free CLIA based on CL-functionalized mesoporous magnetic nanoparticles (CuFeO@mSiO-Cys-Luminol-Au NPs) is developed for the rapid and sensitive detection of NSE.
View Article and Find Full Text PDF