Single-nucleus multiomic mapping of mA methylomes and transcriptomes in native populations of cells with sn-m6A-CT.

Mol Cell

Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Physiology, NUS Yong Loo Lin School of Med

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

N-methyladenosine (mA) RNA modification plays important roles in the governance of gene expression and is temporally regulated in different cell states. In contrast to global mA profiling in bulk sequencing, single-cell technologies for analyzing mA heterogeneity are not extensively established. Here, we developed single-nucleus m6A-CUT&Tag (sn-m6A-CT) for simultaneous profiling of mA methylomes and transcriptomes within a single nucleus using mouse embryonic stem cells (mESCs). m6A-CT is capable of enriching mA-marked RNA molecules in situ, without isolating RNAs from cells. We adapted m6A-CT to the droplet-based single-cell omics platform and demonstrated high-throughput performance in analyzing nuclei isolated from thousands of cells from various cell types. We show that sn-m6A-CT profiling is sufficient to determine cell identity and allows the generation of cell-type-specific mA methylome landscapes from heterogeneous populations. These indicate that sn-m6A-CT provides additional dimensions to multimodal datasets and insights into epitranscriptomic landscape in defining cell fate identity and states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895704PMC
http://dx.doi.org/10.1016/j.molcel.2023.08.010DOI Listing

Publication Analysis

Top Keywords

methylomes transcriptomes
8
single-nucleus multiomic
4
multiomic mapping
4
mapping methylomes
4
transcriptomes native
4
native populations
4
cells
4
populations cells
4
sn-m6a-ct
4
cells sn-m6a-ct
4

Similar Publications

Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.

Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.

View Article and Find Full Text PDF

Hybrid epigenome unveils parental genetic divergence shaping salt-tolerant heterosis in Brassica napus.

New Phytol

September 2025

National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.

View Article and Find Full Text PDF

Background: The molecular mechanisms underlying aneurysmal subarachnoid hemorrhage (aSAH) and delayed ischemic neurologic deficit (DIND) remain poorly understood. We hereby present the study investigating epigenome-wide profile of DNA methylation in adults with aSAH and DIND.

Methods: A prospective observational epigenome-wide association study (EWAS) was conducted with DNA extracted from the peripheral whole blood of subjects with aSAH.

View Article and Find Full Text PDF

The spatial resolution of omics analyses is fundamental to understanding tissue biology. The capacity to spatially profile DNA methylation, which is a canonical epigenetic mark extensively implicated in transcriptional regulation, is lacking. Here we introduce a method for whole-genome spatial co-profiling of DNA methylation and the transcriptome of the same tissue section at near single-cell resolution.

View Article and Find Full Text PDF

Environmental exposures to toxic chemicals can profoundly alter the transcriptome and epigenome in both humans and animals, contributing to disease development across the lifespan. To elucidate how early-life exposure to toxicants exerts such persistent effects, the Consortium generated a landmark resource comprising 2,570 epigenomes and 1,043 transcriptomes from longitudinal studies in mice. All data are publicly available through the TaRGET II data portal and the WashU Epigenome Browser.

View Article and Find Full Text PDF