Publications by authors named "Angelysia Cardilla"

The spatial resolution of omics analyses is fundamental to understanding tissue biology. The capacity to spatially profile DNA methylation, which is a canonical epigenetic mark extensively implicated in transcriptional regulation, is lacking. Here we introduce a method for whole-genome spatial co-profiling of DNA methylation and the transcriptome of the same tissue section at near single-cell resolution.

View Article and Find Full Text PDF

The spatial resolution of omics dynamics is fundamental to understanding tissue biology. Spatial profiling of DNA methylation, which is a canonical epigenetic mark extensively implicated in transcriptional regulation, remains an unmet demand. Here, we introduce a method for whole genome spatial co-profiling of DNA methylation and transcriptome of the same tissue section at near single-cell resolution.

View Article and Find Full Text PDF

Formalin-fixed paraffin-embedded (FFPE) samples represent a vast, untapped resource for epigenomic research, yet molecular tools for deep analysis of these specimens remain limited. We introduce spatial FFPE-ATAC-seq, an approach for in situ profiling chromatin accessibility within archived tissues. This approach overcomes formalin-induced crosslinking challenges, allowing high-resolution mapping of chromatin landscapes while preserving tissue architecture.

View Article and Find Full Text PDF

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.

View Article and Find Full Text PDF

The phenotypic and functional states of a cell are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome, and metabolome. Spatial omics approaches have enabled the capture of information from different molecular layers directly in the tissue context. However, current technologies are limited to map one to two modalities at the same time, providing an incomplete representation of cellular identity.

View Article and Find Full Text PDF
Article Synopsis
  • Human pluripotent stem cell-derived kidney organoids provide new ways to study polycystic kidney disease (PKD), which currently has no effective treatment.
  • Researchers created models that showed signs of PKD, including tubular injury and increased activity of the renin-angiotensin aldosterone system, while also discovering various metabolic changes during cyst formation.
  • They found that activating autophagy could significantly reduce cyst formation, and the FDA-approved drug minoxidil proved effective in decreasing cyst development in vivo, highlighting the organoid model's potential for drug discovery and understanding disease mechanisms.
View Article and Find Full Text PDF

Liquid crystal monomers (LCMs) are a large family of artificial ingredients that have been widely used in global liquid crystal display (LCD) industries. As a major constituent in LCDs as well as the end products of e-waste dismantling, LCMs are of growing research interest with regard to their environmental occurrences and biochemical consequences. Many studies have analyzed LCMs in multiple environmental matrices, yet limited research has investigated the toxic effects upon exposure to them.

View Article and Find Full Text PDF

Inosine is a prevalent RNA modification in animals and is formed when an adenosine is deaminated by the ADAR family of enzymes. Traditionally, inosines are identified indirectly as variants from Illumina RNA-sequencing data because they are interpreted as guanosines by cellular machineries. However, this indirect method performs poorly in protein-coding regions where exons are typically short, in non-model organisms with sparsely annotated single-nucleotide polymorphisms, or in disease contexts where unknown DNA mutations are pervasive.

View Article and Find Full Text PDF

The prevalence of chronic kidney disease (CKD) is rapidly increasing over the last few decades, owing to the global increase in diabetes, and cardiovascular diseases. Dialysis greatly compromises the life quality of patients, while demand for transplantable kidney cannot be met, underscoring the need to develop novel therapeutic approaches to stop or reverse CKD progression. Our understanding of kidney disease is primarily derived from studies using animal models and cell culture.

View Article and Find Full Text PDF