Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Construction of ultra-stable, flexible, efficient and economical catalytic electrodes is of great significance for the seawater electrolysis for hydrogen production. This work is grounded in a one-step mild electroless plating method to construct industrial-grade super-stable overall water splitting (OWS) catalytic electrodes (Fe-NiP@GF) by growing loose and porous spore-like Fe-NiP conductive catalysts in situ on flexible glass fibre (GF) insulating substrates with precise elemental regulation. Cost-effective Fe regulation boosts the electronic conductivity and charge transfer ability to achieve the construction of high intrinsic activity and strong electron density electrodes. Fe-NiP@GF exhibits remarkable catalytic performance in hydrogen and oxygen evolution reaction (HER and OER), providing current densities of 10 mA cm for HER and 100 mA cm for OER at overpotentials of 51 and 216 mV, respectively. Moreover, it achieves 10 mA cm at 1.42 V for OWS, and exhibits stable operation for over 1440 h at 1000 mA cm in quasi-industrial environment of 6.0 M KOH + 0.5 M NaCl, without any performance degradation. This strategy enables the preparation of universally applicable P-based electrodes (ternary, quaternary, etc.) and large-area flexible electrodes (paper or cotton), significantly expands the practicality of the electrodes and demonstrating promising potential for industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.08.157DOI Listing

Publication Analysis

Top Keywords

flexible electrodes
8
electron density
8
catalytic electrodes
8
electrodes fe-nip@gf
8
electrodes
7
situ fabrication
4
fabrication sporoid-like
4
flexible
4
sporoid-like flexible
4
electrodes fe-regulated
4

Similar Publications

Tunable Multistate Mechanoresistance in a Single-Molecule Junction Incorporating Energy-Dissipative Structures.

Angew Chem Int Ed Engl

September 2025

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China.

Mechanoresponsive molecular devices are capable of exhibiting dynamic responses to external mechanical stimuli, enabling applications in smart materials, nano-devices, and flexible electronics. However, energy conversion induced by mechanical stimuli requires efficient energy dissipation mechanisms. Traditional methods often involve bond breaking or incomplete energy release, which can lead to device failure during continuous operations.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) enable communication between individuals and computers or other assistive devices by decoding brain activity, thereby reconstructing speech and motor functions for patients with neurological disorders. This study presents a high-resolution micro-electrocorticography (µECoG) BCI based on a flexible, high-density µECoG electrode array, capable of chronically stable and real-time motor decoding. Leveraging micro-nano manufacturing technology, the µECoG BCI achieves a 64-fold increase in electrode density compared to conventional clinical electrode arrays, enhancing spatial resolution while featuring scalability.

View Article and Find Full Text PDF

Arterial stiffening is an independent risk factor for cardiovascular diseases, particularly affecting organs with low vascular resistance, such as the brain and kidneys. Pulse wave velocity (PWV) is the clinical gold standard for arterial stiffness assessment; however, conventional equipment requires complex setups and trained operators, limiting real-world and point-of-care monitoring. Here, we introduce a tactile-transparent wearable (TTW) sensor that preserves physicians' tactile pulse palpation abilities while providing quantitative cardiovascular risk assessment by integrating flexible Polydimethylsiloxane (PDMS) electrodes and ultrathin graphene oxide dielectric films.

View Article and Find Full Text PDF

Experimental and Simulated Analysis of Polymer Hole Transport Layers and the Electrical and Optical Effects on Perovskite Solar Cells.

ACS Appl Mater Interfaces

September 2025

Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, León, Guanajuato 37150, Mexico.

This study presents a systematic analysis of the impact of polymer hole transport layers (HTLs) in inverted MAPbI perovskite solar cells (PSCs). Devices were fully fabricated under regular atmospheric conditions (≈40% humidity) and low temperature (100 °C) by using Field's Metal (FM) as an alternative top electrode. The widely known π-conjugated polymers P3HT, PTB7-Th, PBDB-T, and MEH-PPV were used as HTLs, and all of them show suitable energy alignment to MAPbI, offering good moisture stability, solution processability, low cost, and attractiveness for large area and flexible PSCs.

View Article and Find Full Text PDF

The multi-channel synchronous stimulator, aimed at achieving efficient and precise neural regulation, typically utilizes a monolithic microelectrode array structure. However, this structure limits the flexibility of electrode placement and the expansion to a large number of nodes, particularly in discontinuous locations. To address this, this paper designs a distributed passive micro-magnetic stimulation (DP-μMS) neuro-regulation device with multi-brain region collaborative stimulation functionality.

View Article and Find Full Text PDF