Experimental quantum simulation of a topologically protected Hadamard gate via braiding Fibonacci anyons.

Innovation (Camb)

State Key Laboratory of Surface Physics, Department of Physics, Center for Field Theory and Particle Physics, and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, and Shanghai Qi Zhi Institute, Shanghai 200030, China.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Topological quantum computation (TQC) is one of the most striking architectures that can realize fault-tolerant quantum computers. In TQC, the logical space and the quantum gates are topologically protected, i.e., robust against local disturbances. The topological protection, however, requires complicated lattice models and hard-to-manipulate dynamics; even the simplest system that can realize universal TQC-the Fibonacci anyon system-lacks a physical realization, let alone braiding the non-Abelian anyons. Here, we propose a disk model that can simulate the Fibonacci anyon system and construct the topologically protected logical spaces with the Fibonacci anyons. Via braiding the Fibonacci anyons, we can implement universal quantum gates on the logical space. Our disk model merely requires two physical qubits to realize three Fibonacci anyons at the boundary. By 15 sequential braiding operations, we construct a topologically protected Hadamard gate, which is to date the least-resource requirement for TQC. To showcase, we implement a topological Hadamard gate with two nuclear spin qubits, which reaches fidelity by randomized benchmarking. We further prove by experiment that the logical space and Hadamard gate are topologically protected: local disturbances due to thermal fluctuations result in a global phase only. As a platform-independent proposal, our work is a proof of principle of TQC and paves the way toward fault-tolerant quantum computation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407541PMC
http://dx.doi.org/10.1016/j.xinn.2023.100480DOI Listing

Publication Analysis

Top Keywords

topologically protected
20
hadamard gate
16
fibonacci anyons
16
logical space
12
protected hadamard
8
braiding fibonacci
8
quantum computation
8
fault-tolerant quantum
8
quantum gates
8
local disturbances
8

Similar Publications

The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

Spin-momentum-locked edge states of quantum spin Hall insulators provide a compelling platform for spintronic applications, owing to their intrinsic protection against backscattering from non-magnetic disorder. This protection emerges from time-reversal symmetry, which pairs Kramers partners of helical edge modes with opposite spin and momentum, thereby strictly forbidding elastic single-particle backscattering within the pair. Yet, contrary to the idealized notion of linear edge bands, the non-monotonic dispersions of realistic materials can host multiple Kramers pairs, reintroducing backscattering channels between them without violating time-reversal symmetry.

View Article and Find Full Text PDF

Titanium (Ti) and Ti alloy are the most widely used implant metals, but the limited bioactivity hinders the further clinical application. Aiming to enhance their osteogenesis, dual biomimetic strategies were utilized to decorate the surface of Ti by topological and biochemical cues. Firstly, a series of concentric circles with TiO nanotubes on Ti were fabricated by photolithography and anodic oxidation.

View Article and Find Full Text PDF

This study evaluated the utility of an integrated drug discovery strategy that combines three emerging data-driven approaches: real-world data analysis, in silico screening, and network pharmacology. First, transcriptomic data from public gene expression databases and adverse event reports were analyzed to address myocarditis induced by immune checkpoint inhibitors. The findings suggested a preventive effect of non-steroidal anti-inflammatory drugs, particularly those targeting the arachidonic acid metabolism pathway.

View Article and Find Full Text PDF