98%
921
2 minutes
20
Urban development in many coastal cities has resulted in altered natural light regimes, with many coastal habitats being artificially shaded during the daytime by built structures such as seawalls and piers, while artificial light emitted from buildings and associated infrastructure creates pollution at night. As a result, these habitats may experience changes to community structure and impacts on key ecological processes such as grazing. This study investigated how changes to light regimes affect the abundance of grazers on natural and artificial intertidal habitats in Sydney Harbour, Australia. We also examined whether differences in patterns of responses to shading or artificial light at night (ALAN) varied across different areas within the Harbour, characterised by different overall levels of urbanisation. As predicted, light intensity was greater during the daytime on rocky shores than seawalls at the more urbanised sites of the harbour. We found a negative relationship between the abundance of grazers and increasing light during the daytime on rocky shores (inner harbour) and seawalls (outer harbour). We found similar patterns at night on rocky shores, with a negative relationship between the abundance of grazers and light. However, on seawalls, grazer abundances increased with increasing night-time lux levels, but this was mainly driven by one site. Overall, we found the opposite patterns for algal cover. Our findings corroborate those of previous studies that found that urbanisation can significantly affect natural light cycles, with consequences to ecological communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.115203 | DOI Listing |
Lancet Gastroenterol Hepatol
October 2025
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy.
Background: Guidelines recommend leaving in situ rectosigmoid polyps diagnosed during colonoscopy that are 5 mm or smaller if the endoscopist optically predicts them to be non-neoplastic. However, no randomised controlled trial has been done to examine the efficacy and safety of this strategy.
Methods: This open-label, multicentre, non-inferiority, randomised controlled trial enrolled adults age 18 years or older undergoing colonoscopy for screening, surveillance, or clinical indications across four Italian centres.
J Hazard Mater
August 2025
Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00560, Finland. Electronic address:
Uranium dioxide (UO) particles can be released from mines, nuclear fuel manufacturing, reactor accidents, and weapons use. They pose inhalation risks, yet their behavior in the human lung remains poorly understood. This study investigates the long-term chemical alteration and dissolution of µm-sized UO particles in two model lung fluids: Simulated Lung Fluid (SLF) and Artificial Lysosomal Fluid (ALF), representing extracellular and intracellular lung environments, respectively.
View Article and Find Full Text PDFLuminescence
September 2025
School of Textile Science and Engineering, Wuyi University, Jiangmen, Guangdong, China.
Acidochromic fluorescent membranes have garnered significant research interest owing to their potential in real-time environmental monitoring and smart sensing applications. However, the rational design of membranes to optimize their structure-property interplay for enhanced acidochromic performance remains further explored. Herein, we prepared various stimulus-responsive micro/nanofibrous membranes using electrospinning technology by incorporating a fluorescent small molecule (TPECNPy-2) with thermoplastic polyurethane (TPU) to obtain specific properties.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037
A one-pot strategy was developed to fabricate a strong and ductile elastomer composed of chitin nanocrystals and poly(deep eutectic solvent) (ChNC/PDES), based on a dual-network structure formed through glycidyl methacrylate (GMA)associated modification, polymerization and crosslinking. This approach enables the integrated pretreatment, chemical modification, and nanodispersion of chitin within a lactic acid/choline chloride deep eutectic solvent (DES) system. Whereafter, the ultraviolet initiated polymerization of GMA with ChNC and DES components produced a homogeneous elastomer with a maximum tensile strength of 4.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N
Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.
View Article and Find Full Text PDF