Publications by authors named "Zicong Shi"

A one-pot strategy was developed to fabricate a strong and ductile elastomer composed of chitin nanocrystals and poly(deep eutectic solvent) (ChNC/PDES), based on a dual-network structure formed through glycidyl methacrylate (GMA)associated modification, polymerization and crosslinking. This approach enables the integrated pretreatment, chemical modification, and nanodispersion of chitin within a lactic acid/choline chloride deep eutectic solvent (DES) system. Whereafter, the ultraviolet initiated polymerization of GMA with ChNC and DES components produced a homogeneous elastomer with a maximum tensile strength of 4.

View Article and Find Full Text PDF

In order to explore the possibility of natural carbohydrate polymers as a biodegradable and sustainable fog water harvesting material, this work proposed an efficient substrate (hydrophobic)-transition layer (amphoteric)-coating (hydrophilic) sandwich spin-coating strategy to form all biomass-based Janus film. The oxalic acid hydrolyzed nanochitin (OAChN) was applied as a transition layer that enabled successful spin-coating of the hydrophilic nanocellulose (TEMPO-oxidized cellulose nanofiber, TOCN) and nanochitin (partially deacetylated chitin nanofibers, DEChN) on the hydrophobic polylactic acid (PLA) film substrate. In which a layer-by-layer (LBL) assembling of TOCN (carboxyl-rich negative surface charge) and DEChN (amino-rich positive surface charge) was designed to form a thickness and surface property controllable polysaccharide coating on PLA.

View Article and Find Full Text PDF

An effective method for preparing food-grade three-dimensional (3D) printing materials was the use of highly concentrated oil-in-water emulsions. This research reported 3D printable materials constructed from food-grade high internal phase Pickering emulsions (HIPPEs) that were stabilized by ε-poly-l-lysine grafted cellulose nanofiber (ε-PL-TOCNs). The ε-PL-TOCNs were prepared via ε-poly-l-lysine grafting of 2, 2, 6, 6-tetramethylpiperidine-N-oxyl (TEMPO)-oxidized cellulose (TOC) and the successive mechanical treatment.

View Article and Find Full Text PDF

There is an increasing concern about developing biobased colloid particles for Pickering stabilization due to the environment-friendliness and health-safety needs. In this study, Pickering emulsions were formed by using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidized cellulose nanofibers (TOCN) and chitin nanofibers prepared by TEMPO-mediated oxidation (TOChN) or partial deacetylation (DEChN). The physicochemical characterizations of Pickering emulsions demonstrated that the higher cellulose or chitin nanofiber concentrations, surface wettability, and zeta-potential, the higher effectiveness in Pickering stabilization.

View Article and Find Full Text PDF

Goose astrovirus (GAstV), the major causative agent of visceral and joint gout in goslings, is a novel pathogen greatly threatening waterfowl industry. Importantly, the horizontal and vertical transmissibility of GAstV posed a great challenge for disease prevention and control. Given the absence of commercial vaccine, restricting vertical transmission and protecting susceptible goslings must be a priority.

View Article and Find Full Text PDF

Getah virus (GETV), a mosquito-borne virus belonging to the Alphavirus genus of family Togaviridae, has become increasingly problematic, which poses a huge threat to the safety of animals and public health. In order to detect GETV quickly and accurately, we have developed a SYBR Green I real-time quantitative reverse transcription PCR (RT-qPCR) assay for GETV with the detection limit of 66 copies/μL, excellent correlation coefficient (R) of 0.9975, and amplification efficiency (E) of 98.

View Article and Find Full Text PDF