98%
921
2 minutes
20
Privacy-preserving federated learning, as one of the privacy-preserving computation techniques, is a promising distributed and privacy-preserving machine learning (ML) approach for Internet of Medical Things (IoMT), due to its ability to train a regression model without collecting raw data of data owners (DOs). However, traditional interactive federated regression training (IFRT) schemes rely on multiple rounds of communication to train a global model and are still under various privacy and security threats. To overcome these problems, several noninteractive federated regression training (NFRT) schemes have been proposed and applied in a variety of scenarios. However, there are still several challenges: 1) how to protect the privacy of DOs' local dataset; 2) how to realize highly scalable regression training without linear dependence on sample dimension; 3) how to tolerate DOs' dropout; and 4) how to enable DOs to verify the correctness of aggregated results returned from the cloud service provider (CSP). In this article, we propose two practical noninteractive federated learning schemes with privacy-preserving for IoMT, named homomorphic encryption based NFRT (HE-NFRT) and double-masking protocol based NFRT (Mask-NFRT), respectively, which are based on a comprehensive consideration of NFRT, privacy concerns, high-efficiency, robustness, and verification mechanism. The security analyses display that our proposed schemes are able to protect the privacy of DOs' local training data, resist collusion attack, and support strong verification to each DO. The performance evaluation results demonstrate that our proposed HE-NFRT scheme is desirable for a high-dimensional and high-security IoMT application while Mask-NFRT scheme is desirable for a high-dimensional and large-scale IoMT application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2023.3271859 | DOI Listing |
Stroke
September 2025
Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China (H.Z., K.H., Q.G.).
Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.
Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.
Muscle Nerve
September 2025
Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea.
Introduction/aims: There is a lack of up-to-date information on the burden of motor neuron diseases (MNDs) in the United States (US). This study aimed to estimate trends in the prevalence, incidence, mortality, and disability-adjusted life years (DALYs) for MNDs in the US from 1990 to 2021.
Methods: We performed a secondary analysis of MNDs in the US using estimates of prevalence, incidence, and mortality obtained from analyses of the Global Burden of Disease 2021 dataset.
Int J Gen Med
September 2025
School of Public Health, Bengbu Medical University, Bengbu, People's Republic of China.
Objective: To develop and validate a nomogram model for predicting the risk of hyperuricemia (HUA) in perimenopausal women.
Methods: In this study, physical examination information of perimenopausal women was collected at the First Affiliated Hospital of University of Science and Technology of China. We utilized the Least Absolute Shrinkage and Selection Operator (Lasso) and binary logistic regression to investigate the risk factors of HUA among perimenopausal women.
Neurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFNat Sci Sleep
September 2025
Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Key Laboratory of Elderly Health; Tianjin Geriatrics Institute, Tianjin, People's Republic of China.
Background: Sleep and frailty are established influencing factors for cardiometabolic diseases (CMDs). However, their joint effects on cardiometabolic multimorbidity (CMM) in older adults remain poorly understood. This study aimed to assess the joint effect of sleep health and frailty on CMD prevalence and severity, with an emphasis on subgroup-specific health risk profiles.
View Article and Find Full Text PDF