Gate-Controlled Quantum Interference Effects in a Clean Single-Wall Carbon Nanotube p-n Junction.

Phys Rev Lett

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The precise control and deep understanding of quantum interference in carbon nanotube (CNT) devices are particularly crucial not only for exploring quantum coherent phenomena in clean one-dimensional electronic systems, but also for developing carbon-based nanoelectronics or quantum devices. Here, we construct a double split-gate structure to explore the Aharonov-Bohm (AB) interference effect in individual single-wall CNT p-n junction devices. For the first time, we achieve the AB modulation of conductance with coaxial magnetic fields as low as 3 T, where the flux through the tube is much smaller than the flux quantum. We further demonstrate direct electric-field control of the nonmonotonic magnetoconductance through a gate-tunable built-in electric field, which can be quantitatively understood in combination with the AB phase effect and Landau-Zener tunneling in a CNT p-n junction. Moreover, the nonmonotonic magnetoconductance behavior can be strongly enhanced in the presence of Fabry-Pérot resonances. Our Letter paves the way for exploring and manipulating quantum interference effects with combining magnetic and electric field controls.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.207002DOI Listing

Publication Analysis

Top Keywords

quantum interference
12
p-n junction
12
interference effects
8
carbon nanotube
8
cnt p-n
8
nonmonotonic magnetoconductance
8
electric field
8
quantum
5
gate-controlled quantum
4
interference
4

Similar Publications

Comparing abstraction and exchange channels in the H + HBr reaction: A stereodynamical control perspective.

J Chem Phys

September 2025

Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.

This study investigates the stereodynamical control of the H + HBr (v = 0, j = 1) reaction within 0.01-1.50 eV collision energy using the time-dependent wave packet method.

View Article and Find Full Text PDF

Recently, machine learning has had remarkable impact in scientific to everyday-life applications. However, complex tasks often require the consumption of unfeasible amounts of energy and computational power. Quantum computation may lower such requirements, although it is unclear whether enhancements are reachable with current technologies.

View Article and Find Full Text PDF

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF

A new variety of nitrogen-doped carbon dots (NCDs) was produced using a hydrothermal synthesis method, based on propanedioic acid and barbituric acid as the sources of carbon and nitrogen. The NCDs were analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Zeta Potential,X-ray Diffraction(XRD),Thermogravimetry-Derivative Thermogravimetry(TG-DTG),Fourier transform infrared spectroscopy (FTIR) and Fluorescence Lifetime. The characterization results indicate that NCDs possess an average diameter of approximately 2.

View Article and Find Full Text PDF

Chemiluminescence offers distinct advantages for bioimaging and sensing, notably by eliminating the need for external light excitation and minimizing background interference. While the original phenoxy-1,2-dioxetanes have served as the cornerstone of chemiluminescent probe design, their efficiency is significantly compromised in aqueous environments. In this study, we report the development and evaluation of phenylamine-substituted 1,2-dioxetanes as a new class of luminophores with markedly enhanced performance under physiological conditions.

View Article and Find Full Text PDF