Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteolysis Targeting Chimera (PROTAC) is a type of bifunctional chimeric molecule that can directly degrade the binding proteins through the ubiquitin-proteasome pathway. PROTAC has shown great potential in overcoming drug resistance and targeting undruggable targets. However, there are still many shortcomings that need to be solved urgently, including worse membrane permeability and bioavailability induced by their large molecular weight. Herein, we used intracellular self-assembly strategy to construct tumor-specific PROTACs via small molecular precursors. We developed two types of precursors incorporated with azide and alkyne as biorthogonal groups, respectively. These small precursors with improved membrane permeability could react facilely with each other under the catalysis of copper ions with high concentration in tumor tissues, affording novel PROTACs. These novel intracellular self-assembled PROTACs could effectly induce degradation of VEGFR-2 and EphB4 in U87 cells. Meanwhile, they could also promote apoptosis and block cells in S phase. These tumor-specific intracellular self-assembled PROTACs exhibited high selectivity due to the high concentration of copper content in tumor tissue. Moreover, this new strategy could reduce the molecular weight of PROTACs, as well as improve the membrane permeability. These results will greatly expand the applications of bioorthogonal reaction in discovery of novel PROTACs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115497DOI Listing

Publication Analysis

Top Keywords

membrane permeability
12
intracellular self-assembly
8
bioorthogonal reaction
8
molecular weight
8
high concentration
8
novel protacs
8
intracellular self-assembled
8
self-assembled protacs
8
protacs
6
discovery intracellular
4

Similar Publications

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Visible Light-Driven Membrane-Bound Compartment for Precise Regulation of Enzyme Activity.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Photo-responsive systems provide a powerful tool to reversibly regulate enzyme activity. However, inhibitor-based strategies, though widely used, are often restricted to specific enzymes. Noninhibitor strategies, such as enzyme surface modification or genetic mutation, often compromise structural integrity or residual activity.

View Article and Find Full Text PDF

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Emodin is a natural anthraquinone derivative with poor water solubility, which limits its antibacterial activity. The purpose of this work is to investigate the antibacterial activity of emodin nanocrystals (EMD-NCs) with different particle sizes against Staphylococcus aureus (S. aureus) and explores its underlying mechanisms.

View Article and Find Full Text PDF

Synthesis of Quaternary Ammonium Derivatives of Eugenol and Their Antifungal Mechanism against Wood-Decaying Fungi.

J Agric Food Chem

September 2025

College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045,

To discover novel preservatives for treating wood-decaying fungi, 48 novel eugenol quaternary ammonium salt derivatives were designed and synthesized. Among them, compounds , , , , , , and showed remarkable antifungal activity against (), affording EC values ranging from 2.11-7.

View Article and Find Full Text PDF