98%
921
2 minutes
20
In our study, 49 key genes significantly associated with renal cell carcinoma (RCC) stemness were obtained. Next, we developed a molecular prognostic signature associated with stemness features of pan-RCC. The difference in overall survival (OS) between the high- and low-risk groups was statistically significant ( < .05). The area under the receiver operating characteristic curve for 1-year OS, 5-year OS, and 10-year OS was 0.759, 0.712, and 0.918, respectively. The results of validation in The Cancer Genome Atlas cohort and International Cancer Genome Consortium cohort revealed the predictive capability of this signature. Furthermore, we selected three genes and further validation showed that these three hub genes were potential hub biomarkers for pan-RCC stemness features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07357907.2023.2209634 | DOI Listing |
Drug Deliv Transl Res
September 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
The three-dimensional (3D) culture system has emerged as an indispensable platform for modulating stem cell function in biomedicine, drug screening, and cell therapy. Despite a few studies confirming the functionality of 3D culture, the molecular factors underlying this process remain obscure. Here, we have utilized a hanging drop method to generate 3D spheroid-derived mesenchymal stem cells (3D MSCs) and compared them to conventionally 2D-cultured MSCs.
View Article and Find Full Text PDFMetabolic reprogramming promotes cancer aggressiveness and an immune-suppressive tumor microenvironment. Loss of the Y chromosome (LOY) drives both phenotypes in bladder cancer (BC). We investigated the hypothesis that LOY leads to metabolic reprogramming using untargeted metabolomic profiling of human BC cells and analysis of pan-cancer transcriptomic datasets.
View Article and Find Full Text PDFDrug Dev Res
September 2025
Department of Orthopedics, Gaoxin Branch of The First Affiliated Hospital, Nanchang University, Nanchang, PR China.
Osteosarcoma (OS) is a common malignant bone tumor, frequently associated with impaired osteogenic differentiation of tumor cells. Recent studies have suggested that the NOTCH signaling pathway plays a crucial role in maintaining tumor cell stemness and may influence their differentiation status. This study investigates the role of NOTCH2, a key receptor in the NOTCH family, in regulating osteogenic differentiation in OS.
View Article and Find Full Text PDFCancer Discov
September 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
Unlabelled: Lineage plasticity, a critical hallmark of cancer progression, enables tumor cells to evade inhibition of primary oncogenic pathways through histologic transformation. This adaptive process, driven by stemness-associated features and epigenetic reprogramming, poses significant challenges in treatment. Using non-small cell lung cancer and prostate cancer as models, we examine the utility of tissue and liquid biopsies in detecting histologic transformations and tailoring treatments to specific subtypes, which has profound clinical implications, potentially improving outcomes in patients with advanced, therapy-resistant disease.
View Article and Find Full Text PDFBiomol Biomed
September 2025
Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing, China.
Secreted Frizzled-Related Protein 4 (sFRP4), the largest member of the Secreted Frizzled-Related Protein (sFRP) family, contains two functional domains: a cysteine-rich domain (CRD) homologous to the Wnt-binding region of Frizzled (FZD) receptors and a netrin-like (NTR) domain structurally similar to axonal guidance proteins. By modulating the Wingless/Integrated (Wnt) signaling pathway, sFRP4 regulates essential cellular processes including proliferation, differentiation, apoptosis, and tissue homeostasis. This review aims to provide a comprehensive overview of the dualistic roles of sFRP4 in cancer, highlighting its tumor-suppressive and tumor-promoting functions, underlying molecular mechanisms, and therapeutic potential.
View Article and Find Full Text PDF