Publications by authors named "Bipul R Acharya"

Metabolic reprogramming promotes cancer aggressiveness and an immune-suppressive tumor microenvironment. Loss of the Y chromosome (LOY) drives both phenotypes in bladder cancer (BC). We investigated the hypothesis that LOY leads to metabolic reprogramming using untargeted metabolomic profiling of human BC cells and analysis of pan-cancer transcriptomic datasets.

View Article and Find Full Text PDF

Connexin37-mediated regulation of cell cycle modulators and, consequently, growth arrest lack mechanistic understanding. We previously showed that arterial shear stress up-regulates Cx37 in endothelial cells and activates a Notch/Cx37/p27 signaling axis to promote G1 cell cycle arrest, and this is required to enable arterial gene expression. However, how induced expression of a gap junction protein, Cx37, up-regulates cyclin-dependent kinase inhibitor p27 to enable endothelial growth suppression and arterial specification is unclear.

View Article and Find Full Text PDF

The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence.

View Article and Find Full Text PDF
Article Synopsis
  • Endothelial cells play a crucial role in the cardiovascular system, and their properties can be influenced by RNA splicing, resulting in different protein isoforms.
  • A long read proteogenomics approach was used to analyze human umbilical vein endothelial cells (HUVECs), revealing 53,863 transcript isoforms from 10,426 genes, with many being novel.
  • The study identified a significant number of novel protein isoforms formed from various RNA splicing mechanisms, suggesting important implications for understanding endothelial cell functions and signaling pathways.
View Article and Find Full Text PDF
Article Synopsis
  • Endothelial cells differentiate into arterial or venous types during blood vessel development, crucial for nutrient and waste transport in tissues.
  • The study uses specific mouse models to reveal that venous endothelial cells are primarily in an early G1 state with BMP signaling, while arterial cells are in a late G1 state with TGF-β signaling.
  • They found that these cell cycle stages are critical for the expression of venous and arterial genes, and that preventing cell cycle progression can fix defects in arterial-venous specification.
View Article and Find Full Text PDF

Heterotypic cell lineages relentlessly exchange biomechanical signals among themselves in metazoan organs. Hence, cell-cell communications are pivotal for organ physiology and pathogenesis. Every cell lineage of an organ responds differently to a specific signal due to its unique receptibility and signal interpretation capacity.

View Article and Find Full Text PDF

Epithelia are active materials where mechanical tension governs morphogenesis and homeostasis. But how that tension is regulated remains incompletely understood. We now report that caveolae control epithelial tension and show that this is necessary for oncogene-transfected cells to be eliminated by apical extrusion.

View Article and Find Full Text PDF

We report an experimental approach to study the mechanosensitivity of cell-cell contact upon mechanical stimulation in suspended cell-doublets. The doublet is placed astride an hourglass aperture, and a hydrodynamic force is selectively exerted on only one of the cells. The geometry of the device concentrates the mechanical shear over the junction area.

View Article and Find Full Text PDF

Adherens junctions are tensile structures that couple epithelial cells together. Junctional tension can arise from cell-intrinsic application of contractility or from the cell-extrinsic forces of tissue movement. Here, we report a mechanosensitive signaling pathway that activates RhoA at adherens junctions to preserve epithelial integrity in response to acute tensile stress.

View Article and Find Full Text PDF

Formins are a diverse class of actin regulators that influence filament dynamics and organization. Several formins have been identified at epithelial adherens junctions, but their functional impact remains incompletely understood. Here, we tested the hypothesis that formins might affect epithelial interactions through junctional contractility.

View Article and Find Full Text PDF

Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling.

View Article and Find Full Text PDF

We have previously reported that RORγ expression was decreased in ER-ve breast cancer, and increased expression improves clinical outcomes. However, the underlying RORγ dependent mechanisms that repress breast carcinogenesis have not been elucidated. Here we report that RORγ negatively regulates the oncogenic TGF-β/EMT and mammary stem cell (MaSC) pathways, whereas RORγ positively regulates DNA-repair.

View Article and Find Full Text PDF

Morphogenesis requires dynamic coordination between cell-cell adhesion and the cytoskeleton to allow cells to change shape and move without losing tissue integrity. We used genetic tools and superresolution microscopy in a simple model epithelial cell line to define how the molecular architecture of cell-cell zonula adherens (ZA) is modified in response to elevated contractility, and how these cells maintain tissue integrity. We previously found that depleting zonula occludens 1 (ZO-1) family proteins in MDCK cells induces a highly organized contractile actomyosin array at the ZA.

View Article and Find Full Text PDF

In this study we sought to identify how contractility at adherens junctions influences apoptotic cell extrusion. We first found that the generation of effective contractility at steady-state junctions entails a process of architectural reorganization whereby filaments that are initially generated as poorly organized networks of short bundles are then converted into co-aligned perijunctional bundles. Reorganization requires coronin 1B, which is recruited to junctions by E-cadherin adhesion and is necessary to establish contractile tension at the zonula adherens.

View Article and Find Full Text PDF

Cellular contractility, driven by actomyosin networks coupled to cadherin cell-cell adhesion junctions, is a major determinant of cellular rearrangement during morphogenesis. It now emerges that contractility arises as the emergent property of a mechanochemical feedback system that encompasses the signals that regulate contractility and the elements of the actomyosin network itself.

View Article and Find Full Text PDF

The kinesin KIF17 localizes at microtubule plus-ends where it contributes to regulation of microtubule stabilization and epithelial polarization. We now show that KIF17 localizes at cell-cell adhesions and that KIF17 depletion inhibits accumulation of actin at the apical pole of cells grown in 3D organotypic cultures and alters the distribution of actin and E-cadherin in cells cultured in 2D on solid supports. Overexpression of full-length KIF17 constructs or truncation mutants containing the N-terminal motor domain resulted in accumulation of newly incorporated GFP-actin into junctional actin foci, cleared E-cadherin from cytoplasmic vesicles and stabilized cell-cell adhesions to challenge with calcium depletion.

View Article and Find Full Text PDF

We showed previously that the kinesin-2 motor KIF17 regulates microtubule (MT) dynamics and organization to promote epithelial differentiation. How KIF17 activity is regulated during this process remains unclear. Several kinesins, including KIF17, adopt compact and extended conformations that reflect autoinhibited and active states, respectively.

View Article and Find Full Text PDF

Microtubule-Targeting agents (MTA) are indispensable for cancer therapeutics. We here report thymoquinone (TQ) as a new MTA that already has been appreciated for its anticancer effects. TQ induced G2/M cell cycle arrest in human non-small lung epithelial cells (A549) and majority of arrested cells were in mitosis.

View Article and Find Full Text PDF

KIF17 is a kinesin-2 family motor that interacts with EB1 at microtubule (MT) plus-ends and contributes to MT stabilization in epithelial cells. The mechanism by which KIF17 affects MTs and how its activity is regulated are not yet known. Here, we show that EB1 and the KIF17 autoinhibitory tail domain (KIF17-Tail) interacted competitively with the KIF17 catalytic motor domain (K370).

View Article and Find Full Text PDF

Apigenin, a natural flavone, present in many plants sources, induced apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 μM for 48 h treatment.

View Article and Find Full Text PDF

Naphthazarin (DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is a naturally available 1,4-naphthoquinone derivatives. In this study, we focused on elucidating the cytotoxic mechanism of naphthazarin in A549 non-small cell lung carcinoma cells. Naphthazarin reduced the A549 cell viability considerably with an IC(50) of 16.

View Article and Find Full Text PDF
Article Synopsis
  • Genistein, a compound found in soy, shows potential in inhibiting the growth of various tumors, with a specific IC(50) value of 72 microM for A549 lung cancer cells.
  • Genistein affects the cell cycle, causing a halt at the G(2)/M phase and leading to dose-dependent depolymerization of microtubules, while not affecting mitosis.
  • The binding of genistein to tubulin is slow and specific, revealing that it does not interact with known drug binding sites, suggesting its antiproliferative effects are primarily due to microtubule disruption.
View Article and Find Full Text PDF

Vitamin K3 (2-methyl-1,4-naphthoquinone), also known as menadione, is the synthetic precursor of all the naturally occurring vitamin K in the body. Vitamin K is necessary for the production of prothrombin and five other blood-clotting factors in humans. We have examined the effects of menadione on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro.

View Article and Find Full Text PDF