98%
921
2 minutes
20
Formins are a diverse class of actin regulators that influence filament dynamics and organization. Several formins have been identified at epithelial adherens junctions, but their functional impact remains incompletely understood. Here, we tested the hypothesis that formins might affect epithelial interactions through junctional contractility. We focused on mDia1, which was recruited to the zonula adherens (ZA) of established Caco-2 monolayers in response to E-cadherin and RhoA. mDia1 was necessary for contractility at the ZA, measured by assays that include a FRET-based sensor that reports molecular-level tension across αE-catenin. This reflected a role in reorganizing F-actin networks to form stable bundles that resisted myosin-induced stress. Finally, we found that the impact of mDia1 ramified beyond adherens junctions to stabilize tight junctions and maintain the epithelial permeability barrier. Therefore, control of tissue barrier function constitutes a pathway for cadherin-based contractility to contribute to the physiology of established epithelia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2017.02.078 | DOI Listing |
Cureus
August 2025
Gastroenterology, School of Digestive and Liver Diseases, Institute of Post-Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata, IND.
Background and objectives Esophageal motility disorders (EMDs) are a major cause of non‑obstructive dysphagia. However, regional data from eastern India are limited. This study aims to describe the spectrum of EMDs in patients with non‑obstructive dysphagia using high‑resolution manometry (HRM) at a tertiary care center in eastern India, and to compare clinical symptoms, and endoscopic and barium findings in patients with achalasia versus non‑achalasia.
View Article and Find Full Text PDFLife Sci Alliance
November 2025
Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
Enterovirus D68 (EV-D68) is an emerging respiratory virus associated with extra-respiratory complications, especially acute flaccid myelitis. However, the pathogenesis of acute flaccid myelitis is not fully understood. It is hypothesised that through infection of skeletal muscles, the virus further infects motor neurons via the neuromuscular junction.
View Article and Find Full Text PDFSci Robot
September 2025
Nick J. Holonyak Micro and Nanotechnology Laboratory, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Neuronal control of skeletal muscle function is ubiquitous across species for locomotion and doing work. In particular, emergent behaviors of neurons in biohybrid neuromuscular systems can advance bioinspired locomotion research. Although recent studies have demonstrated that chemical or optogenetic stimulation of neurons can control muscular actuation through the neuromuscular junction (NMJ), the correlation between neuronal activities and resulting modulation in the muscle responses is less understood, hindering the engineering of high-level functional biohybrid systems.
View Article and Find Full Text PDFNat Biomed Eng
September 2025
Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
Biofluid flow generates fluid shear stress (FSS), a mechanical force widely present in the tissue microenvironment. How brain tumour growth alters the conduit of biofluid and impacts FSS-regulated cancer progression is unknown. Dissemination of medulloblastoma (MB) cells into the cerebrospinal fluid initiates metastasis within the central nervous system.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
Zonula adherens junctions (zAJ) are spatially proximal to tight junctions (TJ), in a superstructure known as the apical junctional complex (AJC). A key component of the AJC is a circumferential ring of filamentous (F)-actin, but how actomyosin contractility drives AJC structure and epithelial barrier function is incompletely understood. Here, we show that a central mechanosensitive component of zAJ, α-catenin (α-cat), undergoes force-dependent phosphorylation in an unstructured linker region.
View Article and Find Full Text PDF