Optical Gain of Vertically Coupled CdZnTe/ZnTe Quantum Dots.

Nanomaterials (Basel)

Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The optical modal gain of CdZnTe/ZnTe double quantum dots was measured using a variable stripe length method, where large and small quantum dots are separated with a ZnTe layer. With a large (~18 nm) separation layer thickness of ZnTe, two gain spectra were observed, which correspond to the confined exciton levels of the large and small quantum dots, respectively. With a small (~6 nm) separation layer thickness of ZnTe, a merged single gain spectrum was observed. This can be attributed to a coupled state between large and small quantum dots. Because the density of large quantum dots (4 × 10 cm) is twice the density of small quantum dots (2 × 10 cm), the density of the coupled quantum dots is determined by that of small quantum dots. As a result, we found that the peak gain (123.9 ± 9.2 cm) with the 6 nm separation layer is comparable to that (125.2 ± 29.2 cm) of the small quantum dots with the 18 nm separation layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965561PMC
http://dx.doi.org/10.3390/nano13040716DOI Listing

Publication Analysis

Top Keywords

quantum dots
40
small quantum
24
separation layer
16
large small
12
dots density
12
quantum
10
dots
10
layer thickness
8
thickness znte
8
small
7

Similar Publications

Ultrasensitive multifunctional biosensor integrating ECL quenching and DPV enhancement for early classification of thyroid cancer via BRAF V600E and microRNA-221 detection.

Biosens Bioelectron

September 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China. Electronic address:

Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer with a high incidence among endocrine malignancies. It tends to metastasize early in lymph nodes and differs markedly from other subtypes in biological behavior, clinical management, and prognosis. Therefore, accurately distinguishing PTC from other pathological subtypes is crucial for guiding diagnosis and treatment decisions.

View Article and Find Full Text PDF

When pathogenic bacteria colonize a wound, they can create an alkaline ecological niche that selects for their survival by creating an inflammatory environment restricting healthy wound healing to proceed. To aid healing, wound acidification has been exploited to disrupt this process and stimulate fibroblast growth, increase wound oxygen concentrations, minimize proteolytic activity, and restimulate the host immune system. Within this study, we have developed cobalt-doped carbon quantum dot nanoparticles that work together with mild acetic acid, creating a potent synergistic antimicrobial therapy.

View Article and Find Full Text PDF

A machine learning-designed "supramolecular armor" imparts exceptional stability to perovskite quantum dots. A guanidinium crosslinker reinforces a β-cyclodextrin layer, creating a robust yet permeable interface that enables direct contact sensing in challenging aqueous environments.

View Article and Find Full Text PDF

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

Nitrosamines are genotoxic, mutagenic impurities and are widely encountered in the global landscape of the pharmaceutical industry. There is a need for rapid detection of nitrosamines in a pharmaceutical product. Here, we report the synthesis of carbon quantum dots (CQDs) using a readily available carbon precursor.

View Article and Find Full Text PDF